Elder Creek Stormwater Facility Performance Efficiency Evaluation

Final Report

September 2010

Prepared for:

Seminole County, Florida

Prepared by:

Environmental Research & Design, Inc.

3419 Trentwood Blvd., Suite 102 Orlando, FL 32812 407 855-9465

ELDER CREEK STORMWATER FACILITY PERFORMANCE EFFICIENCY EVALUATION

Final Report September 2010

Prepared For:

Seminole County, Florida

Prepared By:

Environmental Research and Design, Inc. Harvey H. Harper, III, Ph.D., P.E. 3419 Trentwood Blvd., Suite 102 Orlando, FL 32812 Phone: 407-855-9465

TABLE OF CONTENTS

<u>Sect</u>	ion / De	escription	Page
1.	INT	1-1	
	1.1	Project Description	1-1
	1.2	Work Efforts Performed by ERD	1-10
2.	FIEI	LD AND LABORATORY ACTIVITIES	2-1
	2.1	Field Instrumentation and Monitoring	2-1
	2.2	Laboratory Analyses	2-7
	2.3	Field Measurements	2-8
	2.4	Routine Data Analysis and Compilation	2-8
3.	RES	ULTS	3-1
	3.1	Site Hydrology	3-1
		3.1.1 Rainfall	3-1
		3.1.2 Water Level Elevations	3-7
		3.1.3 Pond Inflow	3-9
		3.1.4 Pond Outflow	3-16
		3.1.5 Pond Evaporation	3-18
		3.1.6 Hydrologic Budget	3-20
		3.1.7 Hydraulic Residence Time	3-22
	3.2	Chemical Characteristics of Monitored Inputs and Outputs	3-22
		3.2.1 Vertical Field Profiles	3-23
		3.2.2 Pond Inflows	3-25
		3.2.2.1 Elder Creek Inflow (Site 1)	3-25
		3.2.2.2 Elder Ditch Inflow (Site 2)	3-27
		3.2.2.3 Elder Ditch Inflow (Site 3)	3-28
		3.2.2.4 Comparison of Inflow Characteristics	3-29
		3.2.3 Bulk Precipitation	3-30
		3.2.4 Pond Outflow	3-35
		3.2.5 Comparison of Inflow and Outflow Characteristics	3-36
	3.3	Mass Inputs and Losses	3-40
	3.4	Pond Performance Efficiency	3-43
	3.5	Pollutant Removal Costs	3-46
	3.6	Discussion	3-48
	3.7	Quality Assurance	3-49

Sect	ction / Description	Page
4.	SUMMARY	4-1

Appendices

- A. Selected Construction Plans for the Elder Creek Stormwater Facility
- B. Laboratory Analyses on Inflow and Outflow Samples
- C. Vertical Field Profiles Collected in the Elder Creek Pond from April 2009-March 2010
- D. Quality Assurance Data

LIST OF FIGURES

Figu	re Number / Description	Page
1-1	Location Maps for the Elder Creek Stormwater Facility	1-2
1-2	Aerial Overview of the Elder Creek Regional Stormwater Pond	1-3
1-3	Significant Inflows and Water Movement in the Elder Creek Wet Detention Pond	1-4
1-4	Open Water Areas of the Elder Creek Pond	1-5
1-5	Broad-crested Weir Structure	1-5
1-6	Shallow Wetland Littoral Zone	1-6
1-7	Pond Outfall Structure	1-6
1-8	Pond Discharge and Inflow to Elder Creek	1-7
1-9	Overview of the Elder Creek Pond Basin Area	1-8
2-1	Monitoring Locations for the Elder Creek Site	2-2
2-2	Inflow Monitoring Equipment at Site 1	2-3
2-3	Inflow Monitoring Equipment at Site 2	2-4
2-4	Inflow Monitoring Equipment at Site 3	2-4
2-5	Inflow Monitoring Equipment at Site 4	2-5
2-6	Pan Evaporation Equipment	2-6
3-1	Comparison of Average and Measured Rainfall in the Vicinity of the Elder Creek Pond Site	3-5
3-2	Fluctuations in Water Levels in the Elder Creek Pond from April 2009-March 2010	3-7
3-3	Photographs of the Elder Creek Pond During High Water Level Conditions in May 2009	3-9

LIST OF FIGURES -- CONTINUED

<u>Figur</u>	re Number / Description	Page
3-4	Inflow Hydrographs to the Elder Creek Pond from Site 1 (Elder Creek)	3-10
3-5	Inflow Hydrographs to the Elder Creek Pond from Site 2 (Elder Ditch)	3-11
3-6	Inflow Hydrographs to the Elder Creek Pond from Site 3 (Elder Ditch)	3-12
3-7	Discharge Hydrographs through the Pond Outfall	3-17
3-8	Expanded View of Outfall Discharge Hydrographs	3-17
3-9	Monthly Lake Evaporation Measured at the Elder Creek Pond from April 2009- March 2010	3-19
3-10	Comparison of Hydrologic Inputs and Losses for the Elder Creek Pond from April 2009-March 2010	3-21
3-11	Compilation of Vertical Depth Profiles Collected in the Elder Creek Pond from April 1, 2009-March 31, 2010	3-24
3-12	Statistical Comparison of General Parameters Measured in Bulk Precipitation at the Elder Creek Pond Site	3-32
3-13	Statistical Comparison of Nitrogen Species Measured in Bulk Precipitation at the Elder Creek Pond Site	3-33
3-14	Statistical Comparison of Phosphorus Species Measured in Bulk Precipitation at the Elder Creek Pond Site	3-34
3-15	Statistical Comparison of General Parameters Measured in Pond Inflows and Outflows	3-37
3-16	Statistical Comparison of Nitrogen Species Measured in Pond Inflows and Outflows	3-38
3-17	Statistical Comparison of Phosphorus Species Measured in Pond Inflows and Outflows	3-39
3-18	Comparison of Inputs of Total Nitrogen and Total Phosphorus to the Elder Creek Pond	3-44
3-19	Photographs of Typical Water Quality Conditions within the Elder Creek Pond	3-48

LIST OF TABLES

<u>Table</u>	Number / Description	Page
1-1	Design Criteria for the Elder Creek Stormwater Facility	1-3
1-2	Existing Land Use in the Elder Creek Basin Area	1-9
2-1	Analytical Methods and Detection Limits for Laboratory Analyses	2-7
3-1	Summary of Rainfall Measured at the Elder Creek Monitoring Site from April 2009-March 2010	3-2
3-2	Summary of Rainfall Characteristics in the Vicinity of the Elder Creek Pond from April 2009-March 2010	3-5
3-3	Measured and Average Rainfall for the Elder Creek Pond Site	3-6
3-4	Summary of Hydrologic Inputs to the Elder Creek Pond Site from Direct Rainfall During the Period from April 2090-March 2010	3-6
3-5	Summary of Water Level Data for the Elder Creek Pond Site	3-8
3-6	Hydrologic Characteristics of the North and South Inflows Along Elder Road	3-13
3-7	Modeled Hydrologic Inputs for the "North" and "South" Sub-basins Along Elder Road	3-14
3-8	Summary of Monthly Runoff Inputs to the Elder Creek Pond from April 2009- March 2010	3-15
3-9	Calculated Monthly Runoff Coefficients for the Elder Creek Pond from April 2009-March 2010	3-16
3-10	Summary of Monthly Discharge from the Elder Creek Pond from April 2009- March 2010	3-18
3-11	Estimated Evaporation Losses at the Elder Creek Pond from April 2009-March 2010	3-20
3-12	Monthly Hydrologic Inputs and Losses at the Elder Creek Pond from April 2009-March 2010	3-22
3-13	Summary of Sample Collection Performed at the Elder Creek Pond Site LT-1	3-23

LIST OF TABLES -- CONTINUED

Table	e Number / Description	Page
3-14	Summary of Laboratory Measurements Conducted on Elder Creek Inflow (Site 1) Samples Collected from the Elder Creek Pond from April 2009-March 2010	3-26
3-15	Summary of Laboratory Measurements Conducted on Elder Ditch Inflow (Site 2) Samples Collected from the Elder Creek Pond from April 2009-March 2010	3-27
3-16	Summary of Laboratory Measurements Conducted on Elder Ditch Inflow (Site 3) Samples Collected from the Elder Creek Pond from April 2009-March 2010	3-28
3-17	Comparison of Mean Chemical Characteristics of Significant Inflows to the Elder Creek Pond	3-30
3-18	Summary of Laboratory Measurements Conducted on Bulk Precipitation Samples Collected from the Elder Creek Pond from April 2009-March 2010	3-31
3-19	Summary of Laboratory Measurements Conducted on Pond Outflow Samples Collected from the Elder Creek Pond from April 2009-March 2010	3-35
3-20	Mean Monthly Concentration for Measured Parameters in Pond Inflow Samples	3-41
3-21	Mean Monthly Concentrations for Measured Parameters in Bulk Precipitation	3-42
3-22	Mean Monthly Concentrations for Measured Parameters in Pond Outflow	3-42
3-23	Calculated Mass Inputs and Losses at the Elder Creek Pond from April 2009- March 2010	3-43
3-24	Estimated Mass Removal Efficiency for the Elder Creek Pond from April 2009-March 2010	3-45
3-25	Summary of Design and Construction Costs for the Elder Creek Stormwater Treatment Facility	3-46
3-26	Calculated 20-year Present Worth Cost for the Elder Creek Stormwater Treatment Facility	3-47
3-27	Calculated Pollutant Removal Costs for the Elder Creek Stormwater Treatment Facility	3-47

SECTION 1

INTRODUCTION

1.1 **Project Description**

This document provides a summary of work efforts conducted by Environmental Research & Design, Inc. (ERD) for Seminole County (County) to conduct a performance efficiency evaluation of the Elder Creek Regional Stormwater Facility. This facility was constructed by the County to reduce pollutant loadings discharging from the Elder Creek and Elder Ditch watersheds into Lake Monroe. The Elder Creek regional stormwater system consists of an off-line wet detention pond constructed along the historical flow path of Elder Creek to provide retrofit water quality treatment. Elder Creek is a natural stream which has been piped in some areas to accommodate development.

Section 303(d) of the Clean Water Act requires states to submit lists of surface waterbodies that do not meet applicable water quality standards. These waterbodies are defined as "impaired waters" and total maximum daily loads (TMDLs) must be established for these waters on a prioritized schedule. Lake Monroe (WBID #2893D) has been designated as an "impaired water" due to elevated nutrient and TSI values. A nutrient TMDL for Lake Monroe was developed by FDEP during 2009. The Elder Creek stormwater facility was constructed to assist in reducing nutrient loadings to Lake Monroe in an effort to improve in-lake nutrient concentrations.

General location maps for the Elder Creek stormwater facility are given on Figure 1-1. The project site is located in Seminole County, east of I-4, north of S.R. 46, west of S.R. 15 (Monroe Road), and south of U.S. 17-92 at the intersection of North Elder Road and Narcissus Avenue. Construction of the facility was completed during June 2007. The project lies within the Lake Monroe basin and the Lockhart-Smith Canal sub-basin.

The stormwater facility collects and treats flow discharging through Elder Creek and Elder Canal in an 11.35-acre wet detention pond, containing both deep open water and shallow vegetated areas. The pond contains a north-south berm which is used to maximize the flow path for inputs into the pond. Water discharged from the pond is released back into the historic flow path of Elder Creek. The drainage basin for areas discharging to the pond consists of approximately 234 acres of commercial, medium-density residential, and light industrial areas, with an impervious percentage of approximately 80%. The regional wet detention pond was constructed to provide both retrofit water quality treatment and flood attenuation. Design criteria for the Elder Creek stormwater facility are summarized in Table 1-1 (CDM, 2002).

An aerial overview of the Elder Creek regional stormwater facility is given on Figure 1-2, and a schematic of significant inflows and flow patterns is given on Figure 1-3. The treatment system consists of an 11.35-acre wet detention pond which was constructed on-line along the historical flow path for Elder Creek. A north-south peninsula was added to prevent short-circuiting and to maximize the flow path within the pond. Inflows into the pond first enter the open water segment which consists of a wet detention pond with a maximum depth of approximately 8 ft.

1-1

Figure 1-1. Location Maps for the Elder Creek Stormwater Facility.

TABLE1-1

DESIGN CRITERIA FOR THE ELDER CREEK STORMWATER FACILITY

PARAMETER	INFORMATION			
Treatment System Type	On-line wet detention pond			
Pond Area	11.35 acres at NWL			
Drainage Basin Area	234 acres			
Drainage Basin Land Use	Commercial, medium-density residential, light industrial			
Basin Impervious Area	188 acres (80%)			
Treatment Volume	1" over basin area			
	1.2" over impervious area			
Permanent Pool Volume	79.2 ac-ft below NWL			
Pond Depth: a. Maximum	a. 8 ft			
b. Mean	b. 6.6 ft (79.2 ac-ft/12 ac)			
Treatment Volume Recovery	50% of treatment volume released in 24-30 hours			
Pond Residence Time	23 days (wet season conditions)			
Littoral Zone	Approximately 30% of pond area			

Figure 1-2. Aerial Overview of the Elder Creek Regional Stormwater Pond.

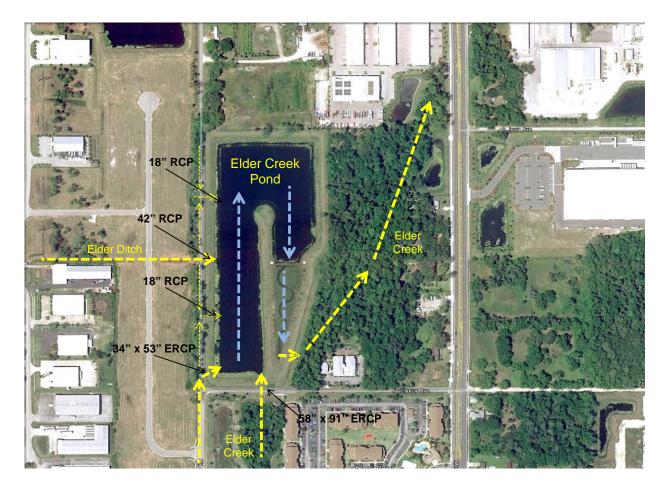


Figure 1-3. Significant Inflows and Water Movement in the Elder Creek Wet Detention Pond.

A photograph of open water areas on the west side of the Elder Creek pond is given on Figure 1-4. The open water portion of the pond is approximately 9.90 acres in size. Discharges from the open water area occur over the 181-ft long broad-crested weir structure indicated on Figure 1-5 which is located on the east side of the peninsula. A fiberglass skimmer is located upstream from the weir structure to prevent floating material from discharging over the weir. Discharges over the weir enter a 1.45-acre shallow wetland littoral zone is intended to provide final polishing for the creek inflows prior to reaching the outfall structure for the pond. A photograph of the shallow wetland littoral zone area is given on Figure 1-6.

A photograph of the pond outfall structure is given on Figure 1-7. The outfall structure contains a compound rectangular weir which provides for slow release of water from the system during small rain events and larger release rates during conditions of high inflow rates into the pond. Discharges through the outfall structure travel through a 42-inch RCP and ultimately rejoin the historic flow path of Elder Creek. Photographs of the pond discharge and the point of inflow to Elder Creek are given on Figure 1-8. The design of the pond requires that all discharge through Elder Creek must pass through the treatment pond even under high flow conditions.

Figure 1-4. Open Water Areas of the Elder Creek Pond.

Figure 1-5. Broad-crested Weir Structure.

Figure 1-6. Shallow Wetland Littoral Zone.

Figure 1-7. Pond Outfall Structure.

a. Outfall Discharge Pipe

b. Inflow to Elder Creek

Figure 1-8. Pond Discharge and Inflow to Elder Creek.

An overview of the contributing drainage basin area for the Elder Creek wet detention pond is given on Figure 1-9. The basin area includes approximately 74.6 acres of the 220-acre Elder Ditch sub-basin which is located west and southwest of the Elder Creek pond and approximately 147.8 acres of the 396-acre Elder Creek sub-basin which is located primarily south and east of the pond. In addition, the pond also provides treatment for approximately 12 acres of sub-basin areas associated with CR-15 (Monroe Road), located immediately east of the Elder Creek pond. Overall, the contributing drainage basin area to the pond is approximately 234.4 acres. According to CDM (2002), approximately 80% of the sub-basin areas consist of impervious surfaces.

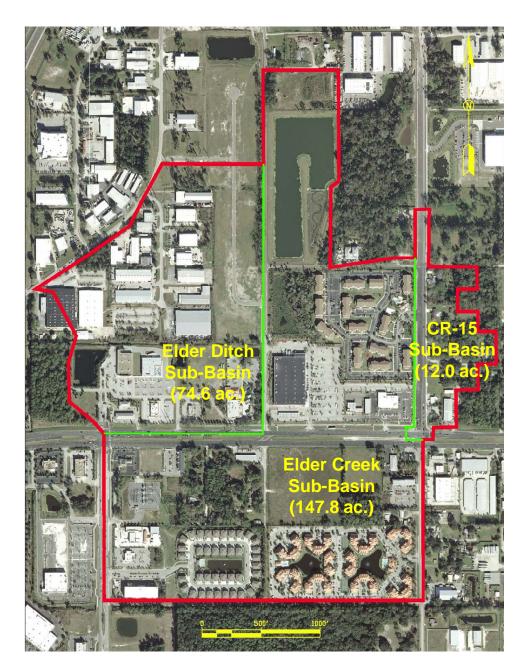


Figure 1-9. Overview of the Elder Creek Pond Basin Area.

As indicated in Table 1-1, the Elder Creek pond is designed to provide treatment equivalent to 1 inch over the 234-acre basin area, or approximately 1.2 inches over the impervious area within the basin. According to the construction drawings (CDM, 2005), the open water portion of the pond has a maximum water depth of approximately 8 ft at the normal water level of 17.0 ft. The shallow littoral zone area has a water depth of approximately 1 ft or less. The total permanent pool volume provided in the pond is approximately 79.2 ac-ft which provides a residence time of approximately 23 days during wet season conditions. The outfall control system is designed such that one-half of the treatment volume is released between 24-30 hours through a 9-inch compound rectangular weir.

A summary of existing land use in the Elder Creek basin area is given on Table 1-2. Approximately 20.7% of the basin area is covered by low-density residential, with 15.1% by commercial uses, and 14.1% by upland mixed hardwood forests. Each of the remaining land use categories listed on Table 1-2 contribute approximately 10% or less of the total basin area. Soils within the drainage basin consist primarily of fine sands which are classified in either Hydrologic Soil Group (HSG) D or B/D. Soils in these classifications are classified as having a relatively high runoff potential with a low infiltration rate.

TABLE 1-2

LAND USE DESCRIPTION	FLUCCS CODE	AREA (acres)	PERCENT COVERAGE (%)
Abandoned Tree Crops	224	19.1	8.1
Commercial and Services	140	35.4	15.1
Herbaceous Range	310	3.7	1.6
Improved Pastures	211	19.7	8.4
Pine Flatwoods	411	3.0	1.3
Low-Density Residential (<2 dwellings/acre)	110	48.5	20.7
Medium-Density Residential (2-5 dwellings/acre)	120	1.5	0.6
Roads and Highways	814	11.8	5.0
Row Crops	214	22.1	9.4
Shrub and Brushland	320	6.3	2.7
Upland Mixed Coniferous/Hardwood	434	33.2	14.1
Wetland Forested Mixed	630	20.5	8.7
Woodland Pastures	213	10.0	4.2
	TOTALS:	234.4	100

EXISTING LAND USE IN THE ELDER CREEK BASIN AREA (Source: CDM, 2002)

Construction of the Elder Creek stormwater facility was completed during June 2007. Funding for design and construction of the Elder Creek stormwater facility was provided by Seminole County in the amount of \$3,420,423. Funding for post-construction monitoring of the Elder Creek facility was provided by the Florida Department of Environmental Protection (FDEP) under Agreement No. S0341 in the amount of \$92,756.38.

1.2 Work Efforts Performed by ERD

A Quality Assurance Project Plan (QAPP) was developed by ERD during February 2008 which provides details concerning the proposed field monitoring and laboratory analyses. Monitoring equipment was installed at the Elder Creek stormwater facility site during March 2009. Routine monitoring was initiated at the Elder Creek site on April 1, 2009 and was continued for a period of 12 months until March 31, 2010.

This report has been divided into four separate sections. Section 1 contains an introduction to the report, a description of the Elder Creek stormwater facility, and a summary of work efforts performed by ERD. Section 2 provides a detailed discussion of the methodologies used for field and laboratory evaluations. Section 3 provides a discussion of the hydrologic and water quality results, and a summary is provided in Section 4.

SECTION 2

FIELD AND LABORATORY ACTIVITIES

Field and laboratory investigations were conducted by ERD over a 12-month period from April 2009-March 2010 to evaluate the effectiveness of the Elder Creek stormwater management facility. Field monitoring was conducted at the inflows and outflow for the pond system and included a continuous record of significant inflows into the system and outflows through the discharge structure. Laboratory analyses were conducted on collected samples for general parameters and nutrients to assist in quantifying concentration-based and mass removal efficiencies. Specific details of monitoring efforts conducted at the Elder Creek stormwater facility site are given in the following sections.

2.1 Field Instrumentation and Monitoring

A schematic of monitoring locations used to evaluate the performance efficiency of the Elder Creek stormwater facility is given on Figure 2-1. Inflow into the stormwater facility was monitored at three significant inflows which included the 58-inch x 91-inch ERCP that conveys Elder Creek into the south side of the pond, the 34-inch x 53-inch ERCP on the southwest corner of the pond which conveys inflow from Elder Ditch, and the 48-inch RCP which enters on the west side of the pond and conveys inflow from Elder Ditch and portions of Elder Road. These locations are referred to on Figure 2-1 as Site 1, Site 2, and Site 3, respectively. Two smaller 18-inch RCP inflows along the west side of the pond, which provide localized drainage for small portions of Elder Road, were not monitored directly as part of this project. Discharges from the pond were monitored at the outfall weir structure, which is designated as Site 4 on Figure 2-1. In addition, a water level recorder was installed upstream from the broad-crested weir to provide a continuous record of water elevations within the open water portion of the pond. A rain gauge and pan evaporimeter were installed adjacent to the pond to provide information on rainfall inputs and evaporation losses.

Stormwater samplers with integral flow meters were installed at each of the three inflow (Sites 1, 2, and 3) and outflow (Site 4) monitoring sites indicated on Figure 2-1. The inflow monitoring site for Elder Creek (Site 1) was located in the 58-inch x 91-inch ERCP approximately 15 ft upstream from the point of inflow to the pond. An automatic sequential stormwater sampler with integral flow meter, manufactured by Sigma (Model 900MAX), was installed adjacent to the pipe inflow. The autosampler was housed inside an insulated aluminum shelter, and sensor cables and sample tubing were extended approximately 15 ft inside the 58-inch x 91-inch ERCP. This autosampler was used to provide a continuous measurement of inflow into the treatment pond from Elder Creek under both storm event and baseflow conditions, as well as to collect flow-weighted samples at the inflow over a wide range of flow into the pond, with measurements stored into internal memory at 10-minute intervals. The

SEMINOLE COUNTY \ ELDER CREEK RSF REPORT

automatic sampler contained a single 20-liter polyethylene bottle and was programmed to collect samples in a flow-weighted mode, with 500 ml aliquots piped into the collection bottle with every programmed increment of flow. Since 120 VAC power was not available at the site, the automatic sampler was operated on 12 VDC batteries which were replaced on a periodic basis. Photographs of inflow monitoring equipment used to monitor the 58-inch x 91-inch ERCP Elder Creek inflow at Site 1 are given on Figure 2-2.

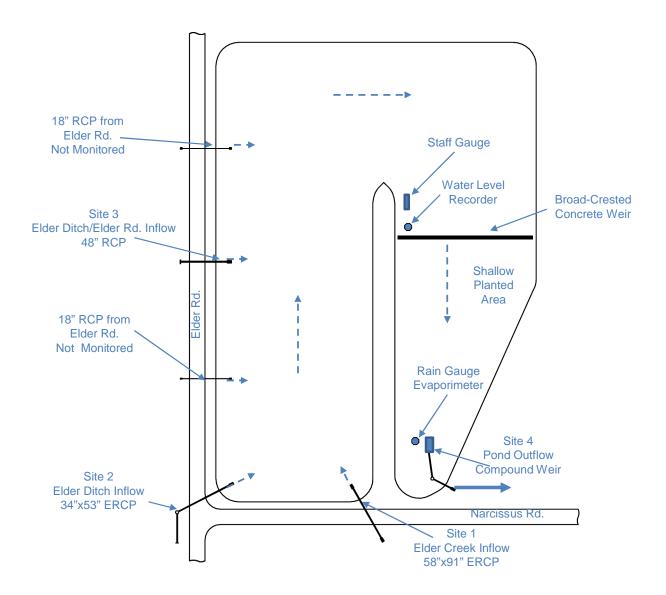


Figure 2-1. Monitoring Locations for the Elder Creek Site.

a. Equipment Location

b. Sampling Equipment

c. Housing for Sample Tubing and Flow Probes

d. Sample Intake and Flow Probe Extended into Pipe

Figure 2-2. Inflow Monitoring Equipment at Site 1.

Inflow monitoring Site 2 was located inside the 34-inch x 53-inch ERCP which discharges into the southwest side of the Elder Creek pond. Photographs of this monitoring site are given on Figure 2-3. The monitoring site was located outside of the fenced perimeter of the pond at an upstream stormsewer junction located on the west side of Elder Road. This location was selected so that the flow monitoring site would be upstream from any significant tail water effects caused by the pond under typical rainfall conditions. An automatic sequential stormwater sampler with internal flow meter, manufactured by Sigma (Model 900MAX), was installed on top of the grate structure for the junction box. The autosampler was housed inside an insulated aluminum shelter, and sensor cables and sample tubing were extended from the sampler through the top grate to the flow monitoring site located approximately 15 ft upstream in the 34-inch x 53-inch ERCP. The integral flow meter was programmed to provide a continuous record of inflow, with measurements stored into internal memory at 10-minute intervals. The automatic sampler contained a single 20-liter polyethylene bottle, and was programmed to collect samples in a flow-weighted mode, with 500-ml aliquots pumped into a collection bottle with every programmed increment of flow. Since 120 VAC power was not available at the site, the automatic sampler was operated on 12 VDC batteries which were replaced on a periodic basis.

a. Equipment location

b. Sampling equipment

Figure 2-3. Inflow Monitoring Equipment at Site 2.

Inflow monitoring Site 3 was located on the west central portion of the pond. This site provides inflow from Elder Ditch, which enters the pond through a 48-inch RCP, as well as a relatively small amount of direct runoff from Elder Road. A photograph of monitoring equipment used at Site 3 is given on Figure 2-4. An automatic sequential stormwater sampler with internal flow meter, manufactured by Sigma (Model 900MAX), was installed adjacent to the inflow for the 48-inch RCP. The autosampler was housed inside an insulated aluminum shelter, and sensor cables and sample tubing were extended from the sampler approximately 15 ft upstream in the 48-inch RCP to avoid tail water impacts from the pond during routine storm events. The integral flow meter was programmed to provide a continuous record of inflow at this site, with measurements stored into internal memory at 10-minute intervals. The automatic sampler contained a single 20-liter polyethylene bottle, and was programmed to collect samples in a flow-weighted mode, with 500-ml aliquots pumped into a collection bottle with every programmed increment of flow. Since 120 VAC power was not available at the site, the automatic sampler was operated on 12 VDC batteries which were replaced on a periodic basis. The bulk precipitation collector was also located at this site and is indicated on Figure 2-4.

Figure 2-4. Inflow Monitoring Equipment at Site 3.

The outflow monitoring site (Site 4) was located at the pond outfall structure on the southwest side of the Elder Creek pond. Photographs of the monitoring equipment installed at Site 4 are given on Figure 2-5. An automatic sequential stormwater sampler with internal flow meter, manufactured by Sigma (Model 900MAX), was installed on top of the outfall structure. The autosampler was housed inside an insulated aluminum shelter, and sensor cables and sample tubing were extended from the sampler to the front side of the outfall structure adjacent to the horizontal bleed-down weir device. The integral flow meter was programmed to provide a continuous record of discharges from the pond, with measurements stored into internal memory at 10-minute intervals. The automatic sampler installed at this time contained a single 20-liter polyethylene bottle, and was programmed to collect samples in a flow-weighted mode, with 500-ml aliquots pumped into a collection bottle with every programmed increment of flow. Since 120 VAC power was not available at the site, the automatic sampler was operated on 12 VDC batteries which were replaced on a periodic basis.

a. Equipment location

b. Sampling equipment

Figure 2-5. Inflow Monitoring Equipment at Site 4.

Flow measurements at the 58-inch x 91-inch ERCP inflow monitoring site (Site 1) were performed using the area/velocity method. The flow probe utilized at this monitoring site provides simultaneous measurements of water depth and flow velocity. The depth measurements were converted into a cross-sectional area based upon the geometry of the pipe, and the velocity of flow is measured directly by the probe. Discharge is then calculated by the flow meter using the Continuity Equation ($Q = A \times V$) in cubic feet per second (cfs).

Flow measurements at the inflow monitoring Sites 2 and 3 were performed using a pressure transducer sensor which transforms sensitive measurements of water depth into a flow rate using the Manning Equation and pipe geometry. The pressure transducer depth probe was inserted approximately 15 ft upstream in each stormsewer. This probe provided continuous measurements of water depth and converted measured water depths into an approximate flow rate.

Flow measurements at the pond outfall monitoring site (Site 4) were performed using a rating curve based on the geometry of the compound rectangular weir bleed-down structure. Modeling was conducted for the configuration of the bleed-down weir device using a standard rectangular weir equation, and the data were used to develop a rating curve of discharge vs. depth of flow over the weir.

Rainfall at the Elder Creek site was monitored using a continuous rainfall recorder attached to a 4-inch x 4-inch wooden post adjacent to the outfall structure. The location of the rainfall recorder is indicated on Figure 2-5. The rainfall recorder (Texas Electronics Model 1014-C) produced a continuous record of all rainfall which occurred at the site, with a resolution of 0.01 inch. Rainfall data were stored inside a digital storage device (HOBO Event Rainfall Logger) which was attached to the wooden post inside a waterproof enclosure. The rainfall record is used to provide information on general rainfall characteristics in the vicinity of the monitoring site and to assist in evaluation of hydrologic inputs from the watershed area.

In addition to the rainfall recorder, a Class A pan evaporimeter was also installed adjacent to the pond outfall site. Measurements of water level within the evaporation pan were recorded on a weekly basis and corrected for measured rainfall to provide estimates of evaporation from the pond surface. Information stored in the rainfall data logger, as well as evaporimeter water level measurements, were retrieved on a weekly basis. A photograph of the pan evaporation equipment is given on Figure 2-6.

Figure 2-6. Pan Evaporation Equipment.

ERD field personnel visited the Elder Creek site at least once each week to retrieve collected stormwater, baseflow, and outflow samples and to download stored hydrologic data from each of the two automatic samplers as well as the rain gauge and evaporimeter. This information was evaluated for quality control purposes and compiled into a continuous data set for use in evaluating the hydrologic performance efficiency of the system.

In addition to the equipment summarized previously, a fixed staff gauge and digital water level recorder were also installed on the broad-crested weir structure which separates the open water portion from the littoral zone area. The digital water level recorder (Global Water Model WL16) collected continuous water level measurements at 15-minute intervals. This information was used to assist in completing the hydrologic budget for the pond and to determine when water level elevations exceeded the spillway weir elevation. Manual readings of staff gauge elevations were conducted on a weekly basis to corroborate the readings from the digital water level recorder. A photograph of the staff gauge and water level recorder is also given on Figure 2-6.

2.2 Laboratory Analyses

A summary of laboratory methods and MDLs for analyses conducted on water samples collected during this project is given in Table 2-1. All laboratory analyses were conducted in the ERD Laboratory which is NELAC-certified (No. 1031026). Details on field operations, laboratory procedures, and quality assurance methodologies are provided in the FDEP-approved Comprehensive Quality Assurance Plan for Environmental Research & Design, Inc. In addition, a Quality Assurance Project Plan (QAPP), outlining the specific field and laboratory procedures to be conducted for this project, was submitted to and approved by FDEP prior to initiation of any field and laboratory activities.

TABLE 2-1

PARAMETER	METHOD OF ANALYSIS	METHOD DETECTION LIMITS (MDLs) ¹
pH	EPA-83, Sec. 150.1 ²	N/A
Conductivity	EPA-83, Sec. 120.1 ²	0.3 μmho/cm
Alkalinity	EPA-83, Sec. 310.1 ²	0.5 mg/l
Ammonia	EPA-83, Sec. 350.1 ²	0.005 mg/l
NO _x	EPA-83, Sec. 353.2 ²	0.005 mg/l
Total Nitrogen	SM-21, Sec. 4500-N C ³	0.01 mg/l
Ortho-P	EPA-83, Sec. 365.1 ²	0.001 mg/l
Total Phosphorus	SM-21, Sec. 4500-P B.5/F ³	0.001 mg/l
Turbidity	EPA-83, Sec. 180.1 ²	0.1 NTU
Color	SM-21, Sec. 2120 C ³	1 Pt-Co Unit
TSS	EPA-83, Sec. 160.2 ²	0.7 mg/l

ANALYTICAL METHODS AND DETECTION LIMITS FOR LABORATORY ANALYSES

1. MDLs are calculated based on the EPA method of determining detection limits

- 2. <u>Methods for Chemical Analysis of Water and Wastes</u>, EPA 600/4-79-020, Revised March 1983.
- 3. <u>Standard Methods for the Examination of Water and Wastewater</u>, 21st ed., 2005.

During each weekly monitoring visit, vertical field profiles of pH, temperature, specific conductivity, dissolved oxygen, and oxidation-reduction potential (ORP) were conducted near the center of the wet detention pond using a Hydrolab Datasonde 4a water quality monitor. Field measurements were conducted at depths of 0.25 m and 0.5 m, and continued at 0.5-m intervals to the pond bottom. This information is used to evaluate potential stratification and anoxic conditions in bottom portions of the wet detention pond.

2.4 Routine Data Analysis and Compilation

All data generated during this project, including hydrologic, hydraulic, and water quality information, were entered into a computerized database and double-checked for accuracy. Hydrologic and hydraulic information was tabulated and summarized on monthly intervals. This information is used to develop a hydrologic budget for the pond for use in evaluating system performance.

Data collected during this project were analyzed using a variety of statistical methods and software. Simple descriptive statistics were generated for runoff inflow, pond outflow, rainfall, and pond water levels to examine changes in water quality characteristics and system performance throughout the research period. The majority of these analyses were conducted using statistical procedures available in Excel.

Statistical procedures such as multiple regression were also conducted to examine predicted relationships between water quality characteristics and hydrologic or hydraulic factors, such as pond water elevation, antecedent dry period, cumulative event rainfall, and other variables. The majority of these analyses were conducted using the SAS (Statistical Analysis System) package.

Distribution patterns for the inflow, outflow, and bulk precipitation data sets were evaluated using both normal probability and log probability plots. These analyses indicated that the data most closely observe a log-normal distribution which is commonly observed with environmental data. As a result, statistical analyses were conducted using log transformations of each of the data sets. The data were then converted back to untransformed data at the completion of the statistical analyses.

SECTION 3

RESULTS

Field monitoring, sample collection, and laboratory analyses were conducted by ERD from April 1, 2009-March 31, 2010 to evaluate the hydraulic and pollutant removal efficiencies of the Elder Creek stormwater facility. A discussion of the results of these efforts is given in the following sections.

3.1 <u>Site Hydrology</u>

3.1.1 Rainfall

A continuous record of rainfall characteristics was collected at the Elder Creek pond monitoring site from April 1, 2009-March 31, 2010 using a tipping bucket rainfall collector with a resolution of 0.01 inch and a digital data logging recorder. The characteristics of individual rain events measured at the Elder Creek pond site are given in Table 3-1. Information is provided for event rainfall, event start time, event end time, event duration, average rainfall intensity, and antecedent dry period for each individual rain event measured at the monitoring site. For purposes of this analysis, average rainfall intensity is calculated as the total rainfall divided by the total event duration.

A total of 51.05 inches of rainfall fell in the vicinity of the Elder Creek pond over the 365-day monitoring period from a total of 125 separate storm events. A summary of rainfall event characteristics measured at the Elder Creek rain gauge site from April 1, 2009-March 31, 2010 is given in Table 3-2. Individual rainfall amounts measured at the pond site range from 0.01-7.79 inches, with an average of 0.41 inches/event. Durations for events measured at the site range from 0.02-49.32 hours, with antecedent dry periods ranging from 0.1-22.9 days.

A comparison of measured and typical "average" rainfall in the vicinity of the Elder Creek pond is given in Figure 3-1. Measured rainfall presented in this figure is based upon the field-measured rain events at the pond site presented in Table 3-1, summarized on a monthly basis. "Average" rainfall conditions are based upon historical average monthly rainfall recorded at the Sanford Airport over the 30-year period from 1971-2000. Historical average annual rainfall in the Sanford area is approximately 51.31 inches/year.

As seen in Figure 3-1, measured rainfall in the vicinity of the Elder Creek pond site was greater than "normal" during May, August, and March, with lower than "normal" rainfall during April, June, July, September, October, and November, and approximately normal rainfall during December, January, and February. A tabular comparison of measured and average rainfall for the Elder Creek pond site is given in Table 3-3. The total annual rainfall of 51.05 inches measured at the Elder Creek site is very close to the "normal" rainfall which typically occurs on an annual basis in the Sanford area. As seen in Table 3-1, a single rain event of 7.79 inches was measured at the Elder Creek pond site during May 2009.

TABLE 3-1

SUMMARY OF RAINFALL MEASURED AT THE ELDER CREEK MONITORING SITE FROM APRIL 2009 – MARCH 2010

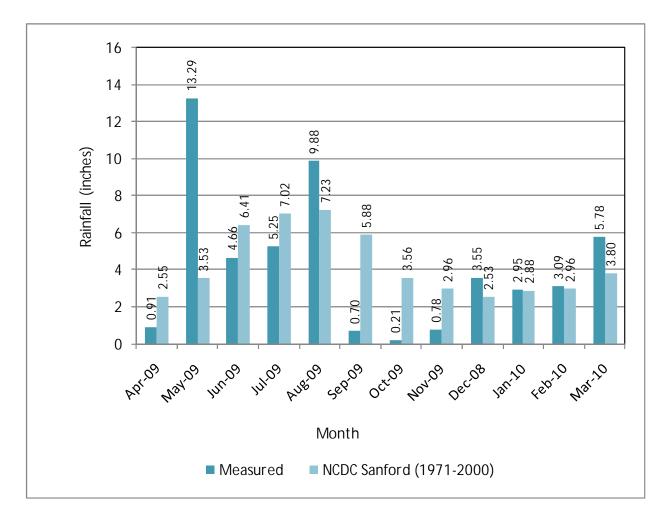
EVENT	START	EVEN	Г END	EVENT	DURATION	ANTECEDENT	AVERAGE
DATE	TIME	DATE	TIME	RAINFALL (inches)	(hours)	DRY PERIOD (days)	INTENSITY (inches/hour)
4/1/09	15:46	4/1/09	16:16	0.18	0.49	0.8	0.37
4/3/09	8:50	4/3/09	9:01	0.11	0.17	1.7	0.64
4/14/09	10:04	4/14/09	13:12	0.55	3.14	11.0	0.18
4/20/09	14:47	4/20/09	15:16	0.07	0.48	6.1	0.15
5/13/09	13:37	5/13/09	14:25	0.87	0.80	22.9	1.09
5/14/09	12:45	5/14/09	16:00	0.11	3.25	0.9	0.03
5/17/09	10:01	5/17/09	10:09	0.03	0.14	2.8	0.22
5/17/09	20:35	5/18/09	0:32	0.34	3.95	0.4	0.09
5/18/09	7:02	5/20/09	8:21	7.79	49.32	0.3	0.16
5/20/09	12:22	5/20/09	13:23	0.51	1.02	0.2	0.50
5/20/09	17:40	5/20/09	23:52	0.88	6.20	0.2	0.14
5/21/09	6:43	5/21/09	8:12	0.06	1.48	0.3	0.04
5/22/09	4:05	5/22/09	8:31	0.24	4.43	0.8	0.05
5/22/09	12:30	5/22/09	17:12	0.32	4.70	0.2	0.07
5/23/09	10:34	5/23/09	11:17	0.53	0.72	0.7	0.73
5/24/09	18:02	5/24/09	20:17	0.36	2.25	1.3	0.16
5/25/09	18:30	5/25/09	19:03	0.82	0.55	0.9	1.49
5/26/09	16:29	5/26/09	17:00	0.27	0.52	0.9	0.52
5/26/09	20:52	5/26/09	21:03	0.04	0.18	0.2	0.22
5/27/09	20:16	5/27/09	20:20	0.05	0.06	1.0	0.82
5/28/09	12:40	5/28/09	13:15	0.06	0.59	0.7	0.10
5/29/09	14:54	5/29/09	14:54	0.01		1.1	
6/3/09	18:58	6/3/09	20:11	0.06	1.23	5.2	0.05
6/4/09	12:55	6/4/09	20:35	1.38	7.66	0.7	0.18
6/5/09	14:40	6/5/09	15:16	0.26	0.61	0.8	0.42
6/6/09	10:47	6/6/09	12:07	0.32	1.32	0.8	0.24
6/6/09	18:09	6/6/09	18:46	0.13	0.61	0.3	0.21
6/8/09	21:05	6/8/09	22:26	0.49	1.35	2.1	0.36
6/13/09	18:11	6/13/09	20:04	0.21	1.88	4.8	0.11
6/14/09	20:59	6/14/09	20:59	0.01		1.0	
6/15/09	18:24	6/15/09	18:27	0.02	0.06	0.9	0.35
6/16/09	18:50	6/16/09	21:40	0.33	2.83	1.0	0.12
6/18/09	14:11	6/18/09	14:56	0.39	0.74	1.7	0.53
6/23/09	16:33	6/23/09	16:35	0.04	0.02	5.1	2.06
6/26/09	11:19	6/26/09	11:19	0.01		2.8	
6/27/09	11:49	6/27/09	12:56	0.07	1.11	1.0	0.06
6/29/09	11:46	6/29/09	11:54	0.09	0.14	2.0	0.63
6/29/09	18:29	6/29/09	18:41	0.31	0.20	0.3	1.52
6/30/09	10:40	6/30/09	16:49	0.54	6.14	0.7	0.09

TABLE 3-1 -- CONTINUED

SUMMARY OF RAINFALL MEASURED AT THE ELDER CREEK MONITORING SITE FROM APRIL 2009 – MARCH 2010

EVENT START		EVENT	r end	EVENT	DURATION	ANTECEDENT	AVERAGE
DATE	TIME	DATE	TIME	RAINFALL (inches)	(hours)	DRY PERIOD (days)	INTENSITY (inches/hour)
7/3/09	16:19	7/3/09	16:26	0.02	0.12	3.0	0.17
7/6/09	15:12	7/6/09	15:13	0.02	0.03	2.9	0.79
7/7/09	12:02	7/7/09	12:05	0.06	0.05	0.9	1.14
7/7/09	19:12	7/7/09	19:12	0.01		0.3	
7/8/09	13:30	7/8/09	18:09	0.36	4.66	0.8	0.08
7/9/09	9:06	7/9/09	10:52	0.17	1.78	0.6	0.10
7/10/09	19:02	7/10/09	19:02	0.01		1.3	
7/11/09	8:02	7/11/09	8:02	0.01		0.5	
7/11/09	18:22	7/11/09	18:22	0.01		0.4	
7/12/09	17:08	7/12/09	18:33	1.27	1.42	0.9	0.90
7/18/09	12:23	7/18/09	12:30	0.07	0.12	5.7	0.58
7/19/09	21:24	7/19/09	22:13	0.04	0.82	1.4	0.05
7/20/09	5:39	7/20/09	7:01	0.02	1.37	0.3	0.01
7/28/09	21:31	7/28/09	23:25	1.07	1.89	8.6	0.57
7/29/09	18:01	7/29/09	22:05	1.36	4.07	0.8	0.33
7/30/09	1:22	7/30/09	1:22	0.01		0.1	
7/30/09	19:03	7/30/09	19:49	0.52	0.78	0.7	0.67
7/31/09	13:09	7/31/09	13:22	0.21	0.22	0.7	0.98
7/31/09	19:01	7/31/09	19:01	0.01		0.2	
8/3/09	16:19	8/3/09	19:03	1.46	2.74	2.9	0.53
8/4/09	15:47	8/4/09	15:50	0.05	0.06	0.9	0.79
8/6/09	17:30	8/6/09	19:18	1.78	1.79	2.1	0.99
8/7/09	16:55	8/7/09	18:31	0.64	1.61	0.9	0.40
8/13/09	14:34	8/13/09	14:34	0.01		5.8	
8/13/09	18:29	8/13/09	20:21	0.62	1.87	0.2	0.33
8/14/09	4:46	8/14/09	4:46	0.01		0.4	
8/14/09	13:01	8/14/09	14:29	2.78	1.46	0.3	1.90
8/15/09	18:37	8/15/09	22:55	0.12	4.30	1.2	0.03
8/18/09	13:00	8/18/09	14:01	0.05	1.02	2.6	0.05
8/19/09	13:03	8/19/09	14:17	0.36	1.24	1.0	0.29
8/20/09	20:17	8/20/09	22:42	1.62	2.42	1.2	0.67
8/21/09	15:11	8/21/09	16:18	0.10	1.13	0.7	0.09
8/24/09	19:31	8/24/09	19:44	0.24	0.22	3.1	1.07
8/25/09	21:10	8/25/09	23:17	0.02	2.10	1.1	0.01
8/26/09	12:58	8/26/09	14:18	0.02	1.33	0.6	0.02
9/5/09	19:58	9/5/09	20:04	0.08	0.10	10.2	0.82
9/6/09	15:35	9/6/09	16:16	0.43	0.69	0.8	0.62
9/12/09	19:13	9/12/09	19:13	0.01		6.1	
9/13/09	15:19	9/13/09	15:33	0.15	0.24	0.8	0.62
9/21/09	7:42	9/21/09	7:49	0.03	0.12	7.7	0.25
10/5/09	16:26	10/5/09	16:28	0.07	0.05	14.4	1.55
10/15/09	14:49	10/15/09	16:19	0.03	1.50	9.9	0.02
10/13/09	18:54	10/13/09	18:58	0.11	0.06	12.1	1.77

TABLE 3-1 -- CONTINUED


SUMMARY OF RAINFALL MEASURED AT THE ELDER CREEK MONITORING SITE FROM APRIL 2009 – MARCH 2010

EVENT START		EVENT END		EVENT DURATION	DURATION	ANTECEDENT	AVERAGE
DATE	TIME	DATE	TIME	RAINFALL (inches)	(hours)	DRY PERIOD (days)	INTENSITY (inches/hour)
11/10/09	20:07	11/10/09	21:22	0.24	1.25	14.0	0.19
11/11/09	4:45	11/11/09	4:45	0.01		0.3	
11/22/09	18:45	11/22/09	19:07	0.11	0.36	11.6	0.31
11/25/09	10:20	11/25/09	14:23	0.41	4.05	2.6	0.10
11/25/09	22:42	11/25/09	22:42	0.01		0.3	
12/2/09	20:56	12/3/09	3:06	0.23	6.16	6.9	0.04
12/4/09	7:22	12/5/09	9:56	2.31	26.56	1.2	0.09
12/7/09	5:42	12/7/09	6:58	0.04	1.27	1.8	0.03
12/10/09	9:20	12/10/09	12:06	0.22	2.75	3.1	0.08
12/10/09	15:21	12/10/09	15:21	0.01		0.1	
12/11/09	16:17	12/11/09	16:17	0.01		1.0	
12/18/09	2:46	12/18/09	2:46	0.01		6.4	
12/18/09	7:54	12/18/09	9:16	0.24	1.37	0.2	0.18
12/25/09	7:36	12/25/09	9:03	0.46	1.46	6.9	0.31
12/25/09	15:01	12/25/09	15:12	0.02	0.18	0.2	0.11
1/1/10	4:37	1/1/10	7:19	0.26	2.70	6.6	0.10
1/1/10	10:30	1/1/10	13:10	0.92	2.66	0.1	0.35
1/5/10	12:04	1/5/10	12:04	0.01		4.0	
1/9/10	9:49	1/9/10	10:37	0.02	0.80	3.9	0.03
1/16/10	22:46	1/17/10	3:03	0.33	4.28	7.5	0.08
1/21/10	18:59	1/21/10	21:04	0.49	2.08	4.7	0.24
1/22/10	0:18	1/22/10	6:49	0.68	6.51	0.1	0.10
1/24/10	22:54	1/24/10	22:54	0.01		2.7	
1/25/10	6:22	1/25/10	8:28	0.11	2.09	0.3	0.05
1/30/10	13:59	1/30/10	15:22	0.12	1.38	5.2	0.09
2/1/10	12:15	2/1/10	17:44	0.22	5.48	1.9	0.04
2/1/10	22:25	2/1/10	22:49	0.04	0.40	0.2	0.10
2/2/10	10:24	2/2/10	11:57	0.09	1.55	0.5	0.06
2/5/10	15:44	2/5/10	19:42	0.36	3.97	3.2	0.09
2/9/10	13:00	2/9/10	17:02	0.90	4.03	3.7	0.22
2/11/10	9:39	2/11/10	9:39	0.01		1.7	
2/12/10	11:21	2/12/10	16:38	0.77	5.28	1.1	0.15
2/22/10	18:48	2/22/10	19:51	0.48	1.05	10.1	0.46
2/24/10	14:35	2/24/10	20:32	0.10	5.95	1.8	0.02
2/27/10	11:00	2/27/10	13:01	0.12	2.00	2.6	0.06
3/2/10	6:17	3/2/10	7:31	0.32	1.23	2.7	0.26
3/11/10	9:07	3/11/10	18:17	2.01	9.17	9.1	0.22
3/12/10	3:32	3/12/10	16:35	0.59	13.04	0.4	0.05
3/12/10	23:33	3/13/10	0:21	0.23	0.81	0.3	0.28
3/21/10	13:49	3/21/10	16:22	0.69	2.54	8.6	0.27
3/25/10	21:39	3/26/10	0:10	0.48	2.52	4.2	0.19
3/28/10	15:32	3/28/10	19:30	0.91	3.97	2.6	0.23
3/29/10	0:55	3/29/10	8:45	0.55	7.84	0.2	0.07
			TOTAL:	51.05	1		

TABLE 3-2

SUMMARY OF RAINFALL CHARACTERISTICS IN THE VICINITY OF THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

PARAMETER	UNITS	MINIMUM VALUE	MAXIMUM VALUE	MEAN EVENT VALUE
Event Rainfall	inches	0.01	7.79	0.41
Event Duration	hours	0.02	49.3	2.76
Average Intensity	inches/hour	0.01	2.06	0.37
Antecedent Dry Period	days	0.13	22.9	2.80

Figure 3-1. Comparison of Average and Measured Rainfall in the Vicinity of the Elder Creek Pond Site.

TABLE 3-3

MEASURED AND AVERAGE RAINFALL FOR THE ELDER CREEK POND SITE

MONTH	MEAN MONTHLY RAINFALL ¹ (inches)	MEASURED SITE RAINFALL ² (inches)	MONTH	MEAN MONTHLY RAINFALL ¹ (inches)	MEASURED SITE RAINFALL ² (inches)
April	2.55	0.91	October	3.56	0.21
May	3.53	13.29	November	2.96	0.78
June	6.41	4.66	December	2.53	3.55
July	7.02	5.25	January	2.88	2.95
August	7.23	9.88	February	2.96	3.09
September	5.88	0.70	March	3.80	5.78
			TOTAL:	51.31	51.05

1. Measured at the Sanford Airport from 1971-2000

2. Measured at the Elder Creek Pond from April 2009-March 2010

A summary of calculated hydrologic inputs to the Elder Creek pond from direct precipitation is given in Table 3-4. These inputs were calculated by multiplying the measured total monthly rainfall times the pond area of 11.35 acres. Calculated hydrologic inputs from direct precipitation range from a low of 0.20 ac-ft during October 2008 to a high of 12.57 ac-ft during May 2008. The values summarized in Table 3-4 are utilized in a subsequent section to develop a hydrologic budget for the pond.

TABLE 3-4

SUMMARY OF HYDROLOGIC INPUTS TO THE ELDER CREEK POND SITE FROM DIRECT RAINFALL DURING THE PERIOD FROM APRIL 2009 – MARCH 2010

MONTH	RAINFALL (inches)	RAINFALL VOLUME ¹ (ac-ft)	MONTH	RAINFALL (inches)	RAINFALL VOLUME ¹ (ac-ft)
April	0.91	0.86	October	0.21	0.20
May	13.29	12.57	November	0.78	0.74
June	4.66	4.41	December	3.55	3.36
July	5.25	4.97	January	2.95	2.79
August	9.88	9.34	February	3.09	2.92
September	0.70	0.66	March	5.78	5.47
			TOTAL:	51.05	48.28

1. Based on a pond surface area of 11.35 acres

3.1.2 Water Level Elevations

Water surface elevations in the Elder Creek pond were monitored on a continuous basis from April 2009-March 2010 using a sensitive water level pressure transducer with a digital data logger. As discussed in Section 2, this water level recording device was located at the broad-crested weir which separates the open water and littoral zones of the pond and was used to evaluate pond response to common rain events within the watershed and to indicate when water discharge occurred over the weir structure.

A graphical summary of fluctuations in water levels in the Elder Creek pond from April 2009-March 2010 is given on Figure 3-2. Total daily rainfall is also summarized on this figure to illustrate changes in water surface elevations resulting from monitored rainfall events.

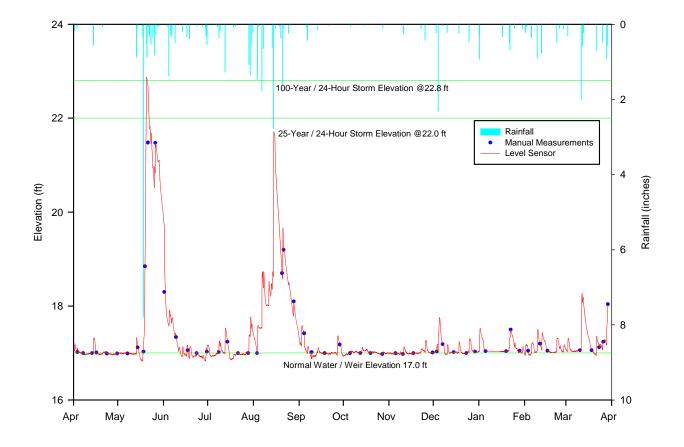


Figure 3-2. Fluctuations in Water Levels in the Elder Creek Pond from April 2009-March 2010.

As seen in Figure 3-2, pond water levels were either slightly above or slightly below the normal water/weir elevation of 17.0 ft throughout much of the 12-month monitoring program. Pond surface elevations responded rapidly to rain events in excess of approximately 0.5 inches within the watershed, with a gradual drawdown occurring over a period of several days. Substantial increases in water elevations were observed within the Elder Creek pond as a result of the 7.79-inch rain event which occurred over the period from May 18-20, 2009, with water elevations briefly exceeding the 100-year/24-hour storm elevation of 22.8 ft during this event. A second significant peak in water surface elevations occurred during August as a result of multiple storm events during the first few weeks of the month. Pond water level elevations approached, but did not exceed, the 25-year/24-hour storm elevation of 22.0 ft. However, water drawdown from each of these events occurred relatively rapidly, with normal water surface elevations achieved within a period of approximately 2-3 weeks following the peak measured elevations. Water surface elevations within the pond exhibited a fluctuation of approximately 6 ft during the study period.

Photographs of the Elder Creek pond during high water conditions in May 2009 are given on Figure 3-3. Flooding conditions within the pond resulted in complete submergence of the outfall structure, and the high rate of water discharged through the outfall structure during this event damaged the fiberglass skimmer. A floating palm tree entered the pond through the 58inch x 91-inch ERCP at Site 1 and dislodged and damaged the sample intake and flow sensor, requiring repair and replacement, respectively. The flooding conditions also partially submerged the equipment shelter installed at Site 1.

Measured minimum, maximum, and average water surface elevations during the monitoring program are summarized in Table 3-5. The minimum water surface elevation of 16.83 ft is slightly lower than the stated control elevation of 17.0 ft with the mean water level elevation of 17.33 ft slightly greater than the control elevation. During periods of low rainfall, the pond water surface elevation exhibited a gradual decline and fluctuated slightly above and below the control elevation.

TABLE 3-5

PARAMETER	ELEVATION (ft, NGVD)
Control Elevation	17.0
Measured Minimum Water Stage	16.83
Measured Maximum Water Stage	22.88
Mean Water Level	17.33
Design Peak Stage (25-yr, 24-hr storm)	22.0

SUMMARY OF WATER LEVEL DATA FOR THE ELDER CREEK POND SITE

a. Floating palm tree relocated sample intake and flow sensor

b. Flooding conditions at the outfall structure

c. High flows damaged outfall skimmer

- d. Flooding conditions at Site 1
- Figure 3-3. Photographs of the Elder Creek Pond During High Water Level Conditions in May 2009.

3.1.3 Pond Inflow

Continuous inflow hydrographs were recorded at three significant inflows to Elder Creek pond at 10-minute intervals from April 1, 2009-March 31, 2010. In addition to the continuous inflow hydrographs, information was also provided on total daily volume and cumulative total volume for the period of record.

A graphical summary of inflow hydrographs to the Elder Creek pond through the 58-inch x 91-inch ERCP (Site 1) which discharges from Elder Creek into the pond is given on Figure 3-4. Inflows into the pond were typically 3-4 cfs or less during common storm events. However, inflows as high as 36 cfs occurred as a result of the 7.79-inch rain event which occurred during May 2009. An inflow rate of approximately 25 cfs was observed as a result of multiple rain events which occurred during the first few weeks of August.



Figure 3-4. Inflow Hydrographs to the Elder Creek Pond from Site 1 (Elder Creek).

A graphical summary of inflow hydrographs for the Elder Ditch inflow (Site 2) over the period from April 2009-March 2010 is given on Figure 3-5. Inflows into the pond from this site were typically approximately 0.5 cfs or less during a majority of the measured common rain events. However, inflow rates in excess of 5 cfs were observed at this site as a result of the 7.79-inch rain event which occurred during May 2009. Inflows of approximately 3.5 cfs were observed as a result of multiple storm events during the first few weeks of August 2009. Inflows from this site essentially ceased during extended periods of little or no rainfall.

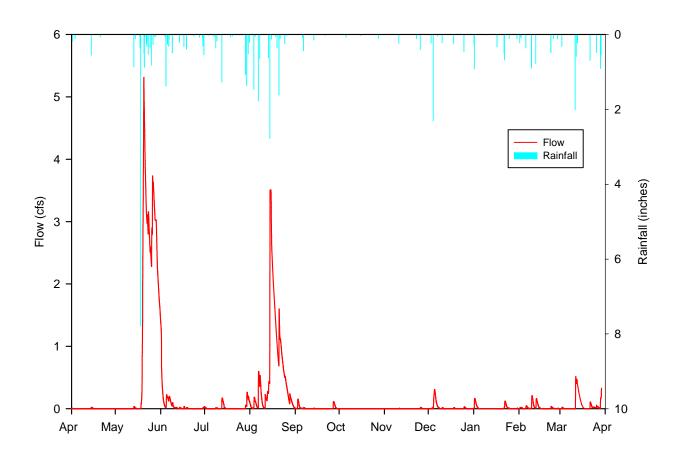


Figure 3-5. Inflow Hydrographs to the Elder Creek Pond from Site 2 (Elder Ditch).

A graphical summary of inflow hydrographs to the Elder Creek pond from Site 3 (Elder Ditch) over the period from April 2009-March 2010 is given on Figure 3-6. In general, inflow hydrographs measured at this site are similar to the inflow hydrographs measured as Sites 1 and 2. Discharges into the pond during typical storm events were approximately 1 cfs or less. However, inflow rates in excess of 11 cfs were observed as a result of the 7.79-inch rain event during May 2009, with inflow rates of approximately 8 cfs resulting from the extended period of rainfall during August 2009.

As discussed in Section 2.1 and illustrated on Figure 2-1, two smaller 18-inch RCP inflows, which provide drainage for portions of Elder Road, were not directly monitored as part of this project. These inflows were thought to be relatively minimal in comparison with the larger inflows which were included in the monitoring program. As a result, inflows from the smaller inputs were estimated using hydrologic modeling of the estimated runoff volume generated during each of the individual monitored rainfall events summarized in Table 3-1. This modeling exercise is used to represent the total runoff volume which discharged into the Elder Creek pond from the two 18-inch RCP inflows along the west side of Elder Road.

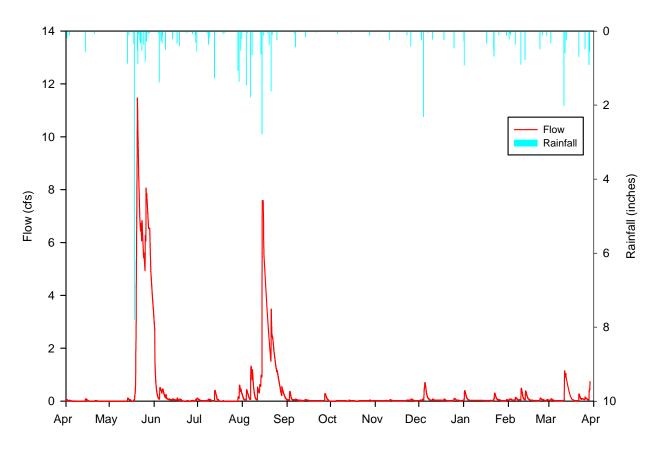


Figure 3-6. Inflow Hydrographs to the Elder Creek Pond from Site 3 (Elder Ditch).

The SCS curve number methodology was used to generate estimates of the runoff volumes produced within the two drainage sub-basin areas for each of the monitored rainfall events listed in Table 3-1. The SCS methodology utilizes the hydrologic characteristics of the drainage basin, including impervious area, directly connected impervious area (DCIA), and soil curve numbers (CN value) to estimate runoff volumes for modeled storm events. Hydrologic characteristics were developed by ERD for each of the two sub-basin areas associated with the 18-inch RCP inflows. Information on drainage basin boundaries was obtained from the construction drawings for the project. Hydrologic characteristics were developed for each of the two sub-basins for use in hydrologic modeling. Hydrologic characteristics for the sub-basin areas were determined by ERD based upon a review of the construction drawings and available aerial photography.

A summary of general hydrologic characteristics for each of the two sub-basin areas is given in Table 3-6. For purposes of this analysis, the sub-basin areas are referred to as "north" and "south" which reflects the general locations of the inflows along Elder Road. The drainage basin areas for these inflows are relatively small, with a 0.38-acre drainage basin for the north inflow and a 0.46-inch drainage basin for the south inflow. Approximately 50% of each sub-basin is impervious, although none of the impervious areas are considered to be DCIA for modeling purposes. Soils within the two small drainage basins are classified in HSG D which is reflected in the selected CN values listed in Table 3-6.

PARAMETER	NORTH SUB-BASIN	SOUTH SUB-BASIN
Total Area (acres)	0.38	0.46
Impervious Area (acres)	0.19	0.23
DCIA (acres)	0.00	0.00
DCIA (%)	0.00	0.00
Pervious CN	80	80
Non-DCIA CN	89	89
S (inches)	1.24	1.24

HYDROLOGIC CHARACTERISTICS OF THE NORTH AND SOUTH INFLOWS ALONG ELDER ROAD

TABLE 3-6

After estimating the hydrologic characteristics of the basin area, the runoff volume for each rainfall event is calculated by adding the rainfall excess from the non-directly connected impervious area (non-DCIA) portion to the rainfall excess created from the DCIA portion for the basin. Rainfall excess from the non-DCIA areas is calculated using the following set of equations:

Soil Storage,
$$S = \left(\frac{1000}{nDCIA CN} - 10\right)$$

$$nDCIA CN = \frac{[CN * (100 - IMP)] + [98 (IMP - DCIA)]}{(100 - DCIA)}$$

$$Q_{nDCIA_i} = \frac{(P_i - 0.2S)^2}{(P_i + 0.8S)}$$

where:

CN	=	curve number for pervious area
IMP	=	percent impervious area
DCIA	=	percent directly connected impervious area
nDCIA CN	=	curve number for non-DCIA area
P _i	=	rainfall event depth (inches)
QnDCIAi	=	rainfall excess for non-DCIA for rainfall event (inches)

For the DCIA portion, rainfall excess is calculated using the following equation:

$$Q_{DCIA_i} = (P_i - 0.1)$$

When P_i is less than 0.1, Q_{DCIAi} is equal to zero. This methodology was used to estimate the generated runoff volume within each of the delineated sub-basin areas for each of the rainfall events listed in Table 3-1.

A summary of modeled hydrologic inputs for the north and south sub-basins along Elder Road is given in Table 3-7. References to the associated inflow structures on the design plans are also included. In general, inflows through the two 18-inch RCP stormsewers are relatively small, with a total of approximately 1.2 ac-ft of runoff discharged into the Elder Creek pond over the 12-month monitoring program.

TABLE3-7

	HYDROLOGIC INPUTS (ac-ft)			
MONTH	North (Structure S-23)	South (Structure S-26)	Total	
April	0.002	0.002	0.004	
May	0.228	0.276	0.504	
June	0.021	0.025	0.046	
July	0.044	0.053	0.097	
August	0.129	0.156	0.285	
September	0.001	0.001	0.002	
October	0.000	0.000	0.000	
November	0.001	0.001	0.002	
December	0.042	0.051	0.093	
January	0.012	0.015	0.027	
February	0.014	0.016	0.030	
March	0.049	0.060	0.109	
		TOTAL:	1.199	

MODELED HYDROLOGIC INPUTS FOR THE "NORTH" AND "SOUTH" SUB-BASINS ALONG ELDER ROAD

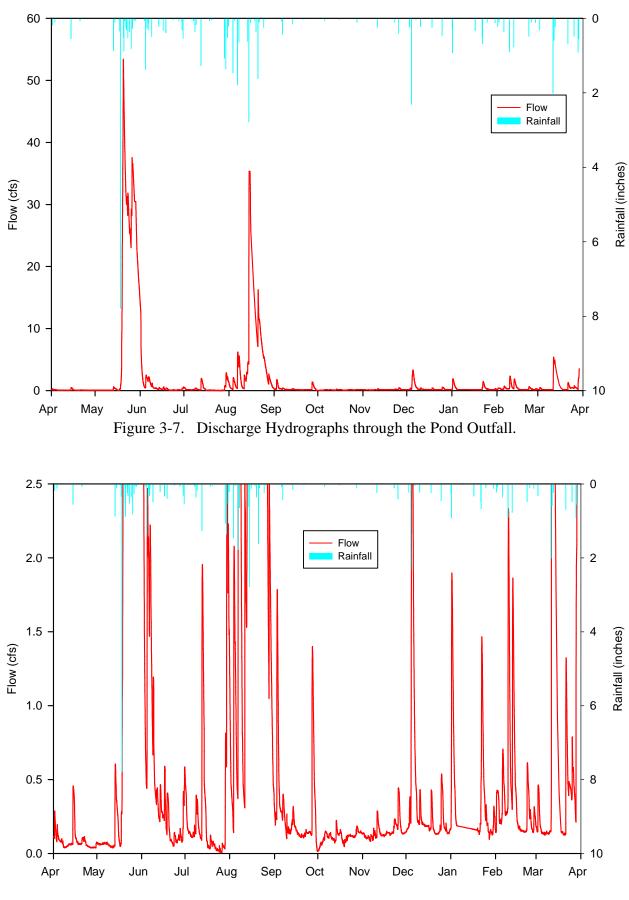
A summary of total monthly runoff generated inputs to the Elder Creek pond from April 2009-March 2010 is given in Table 3-8. Inputs are included for monitoring Sites 1, 2, and 3 as well as the combined modeled inflows from the Elder Road inflows. Overall, the total runoff generated input into the Elder Creek pond during the monitoring program was approximately 1,192 ac-ft. Approximately 70% of this inflow was contributed by the Elder Creek inflow at Site 1, with 9% contributed by the Elder Ditch inflow at Site 2 and 21% contributed by the Elder Ditch inflow at Site 3. Roadway inflows along Elder Road contributed less than 1% of the total runoff inputs to the pond. The information summarized in Table 3-8 is utilized in a subsequent section for estimation of hydrologic and nutrient budgets for the pond.

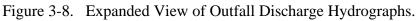
	INPUTS (ac-ft)					
MONTH	Site 1	Site 2	Site 3	Elder Road Inflows	Total Runoff Inputs	
April	4.62	0.04	0.40	0.004	5.06	
May	510.4	73.44	159.1	0.504	743.4	
June	36.51	4.08	10.42	0.046	51.1	
July	15.43	1.33	3.86	0.097	20.7	
August	174.6	24.18	53.95	0.285	253.0	
September	12.59	0.62	2.86	0.002	16.1	
October	6.10	0.00	0.72	0.000	6.82	
November	7.52	0.04	1.20	0.002	8.76	
December	17.12	1.10	4.22	0.093	22.5	
January	11.65	0.75	2.87	0.027	15.3	
February	16.79	1.14	4.29	0.030	22.3	
March	19.78	1.90	5.37	0.109	27.2	
TOTALS:	833.1	108.6	249.3	1.20	1,192	
% of TOTAL:	70	9	21	<1	100	

SUMMARY OF MONTHLY RUNOFF INPUTS TO THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

A summary of calculated monthly runoff coefficients for the Elder Creek drainage basin is given in Table 3-9. These values are calculated as the ratio of the measured runoff inflow to the calculated rainfall volume which fell onto the 234-acre drainage basin during each month of the study. This analysis includes all measured inflow into the pond from the inflow summarized on Table 3-8. In general, runoff coefficients for the Elder Creek basin appear to be elevated during each month of the monitoring program compared with values commonly observed in urban drainage basins with similar rainfall amounts. Runoff coefficients in excess of 1 were observed during May, August, September, and October during the monitoring program. The overall mean runoff coefficient for the Elder Creek drainage basin is 1.197 which exceeds the theoretical maximum value of 1.0.

The values summarized on Table 3-9 suggest that the contributing drainage basin area to the pond has been underestimated, resulting in runoff contributions from a substantially larger area than the 234-acre estimated drainage basin. This is further supported by the water surface elevation data (summarized in Figure 3-2) which indicate that water surface elevations exceeded the 100-year/24-hour storm elevation of 22.8 ft resulting from a 7.79-inch rain event which occurred over a 48-hour period. The 100-year storm event would have substantially more rainfall which would occur over a 24-hour period rather than a 48-hour period. Therefore, based upon pond performance observed during the monitoring program, and the calculated monthly runoff coefficients summarized in Table 3-9, it appears likely that the actual drainage basin area discharging to the Elder Creek pond is substantially greater than the estimated basin area of 234 acres.


MONTH	TOTAL RUNOFF INFLOW (ac-ft)	RAINFALL (inches)	RUNOFF COEFFICIENT (C Value)
April	5.06	0.91	0.285
May	743.4	13.29	2.87
June	51.1	4.66	0.562
July	20.7	5.25	0.202
August	253.0	9.88	1.31
September	16.1	0.70	1.18
October	6.82	0.21	1.67
November	8.76	0.78	0.576
December	22.5	3.55	0.325
January	15.3	2.95	0.266
February	22.3	3.09	0.370
March	27.2	5.78	0.241
TOTALS:	1,192	51.05	1.197


CALCULATED MONTHLY RUNOFF COEFFICIENTS FOR THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

3.1.4 Pond Outflow

Discharges from the Elder Creek pond occur through an outfall structure located at the southwest corner of the pond. This outfall structure contains a compound horizontal weir which regulates discharges from the pond during common storm events. Discharges through the outfall structure were monitored using a standard broad-crested weir equation based upon the outfall weir configuration and depth of water over the weir.

A graphical summary of discharge hydrographs measured at the pond outfall structure is given on Figure 3-7. The vast majority of measured discharge rates at this site are less than approximately 1 cfs, with the exception of the significant rain events which occurred during May and August 2009. During the 7.79-inch rain event which occurred during May, discharge through the outfall structure exceeded approximately 50 cfs for a brief period. During the period of extended rainfall which occurred during early August, discharges through the discharge structure reached approximately 35 cfs. An expanded view of the outfall discharge hydrographs is given on Figure 3-8. In the absence of storm events, a constant baseflow was observed at the pond outfall which ranged from approximately 0.1-0.25 cfs.

A summary of monthly discharges from the Elder Creek pond during the monitoring program from April 2009-March 2010 is given in Table 3-10. In general, outfall discharge appears to correlate well with rainfall within the basin area. Overall, a discharge of approximately 1201 ac-ft occurred from the pond outfall during the field monitoring program.

TABLE 3-10

SUMMARY OF MONTHLY DISCHARGE FROM THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

MONTH	RAINFALL (inches)	OUTFALL DISCHARGE (ac-ft)
April	0.91	5.29
May	13.29	744.2
June	4.66	52.49
July	5.25	21.33
August	9.88	254.8
September	0.70	16.76
October	0.21	6.93
November	0.78	8.90
December	3.55	22.89
January	2.95	15.74
February	3.09	23.33
March	5.78	27.85
TOTALS:	51.05	1200.5

3.1.5 <u>Pond Evaporation</u>

As discussed in Section 2, a Class A pan evaporimeter was installed on a level wooden platform adjacent to the Elder Creek pond outfall structure. Changes in water level within the pan were recorded at approximately 1-week intervals and corrected for rainfall which occurred during the preceding period to obtain estimates of pan evaporation. The pan evaporation measurements were then multiplied by the standard factor of 0.7 to produce estimates of evaporation from the pond surface.

A graphical summary of monthly lake evaporation measured at the Elder Creek pond site from April 2009-March 2010 is given on Figure 3-9. The values summarized in this figure reflect the measured pan evaporation rates multiplied by 0.7. Monthly evaporation rates measured at the Orlando International Airport (OIA) meteorological station over the period from 1956-1970 are also provided on Figure 3-9 for comparison purposes. In general, a relatively close agreement was observed between the field-measured values at the Elder Creek site and the OIA monitoring station. The total evaporation measured at the Elder Creek site during the 12month monitoring program was 52.71 inches compared with an annual average of 51.21 inches measured at the OIA monitoring site.

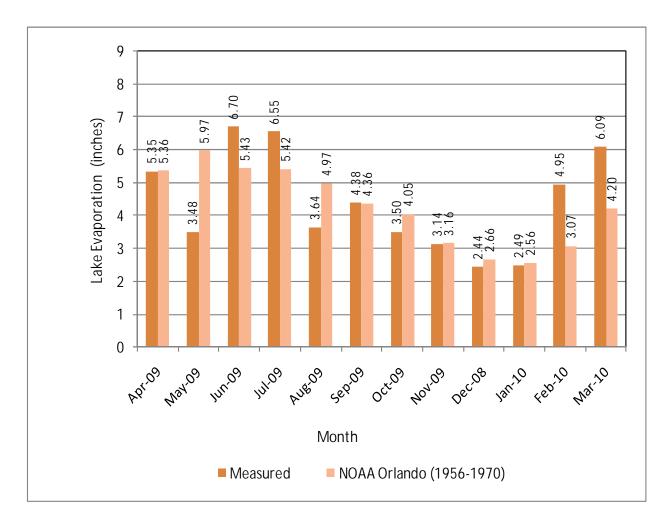
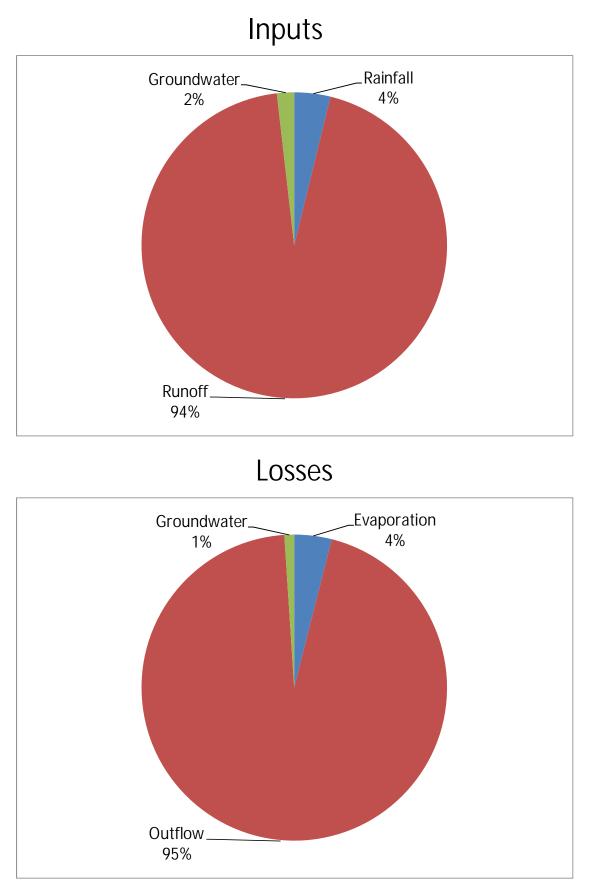
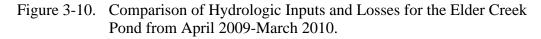


Figure 3-9. Monthly Lake Evaporation Measured at the Elder Creek Pond from April 2009-March 2010.

A summary of estimated evaporation losses at the Elder Creek pond from April 2009-March 2010 is given on Table 3-11. Monthly evaporation is provided for each month included in the 12-month study period. Pond evaporation is calculated by multiplying the evaporation depth (in inches) times the pond area of 11.35 acres. Evaporation losses removed approximately 49.86 ac-ft of water from the Elder Creek pond over the monitoring period.


MONTH	EVAPORATION (inches)	EVAPORATION (ac-ft)	MONTH	EVAPORATION (inches)	EVAPORATION (ac-ft)
April	5.35	5.06	October	3.50	3.31
May	3.48	3.29	November	3.14	2.97
June	6.70	6.34	December	2.44	2.31
July	6.55	6.20	January	2.49	2.36
August	3.64	3.44	February	4.95	4.68
September	4.38	4.14	March	6.09	5.76
			TOTAL:	52.71	49.86


ESTIMATED EVAPORATION LOSSES AT THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

3.1.6 <u>Hydrologic Budget</u>

A monthly hydrologic budget for the Elder Creek pond is given in Table 3-12. Inputs into the pond include direct rainfall and inflows from Elder Creek and Elder Ditch. Losses from the pond include evaporation and discharges through the pond outfall structure. Differences between measured inputs and losses for a given month are assumed to be a result of either groundwater inflow or loss from the pond. During months when the measured hydrologic inputs are less than the measured hydrologic losses, the difference is assumed to be groundwater inflow into the pond. During months where the inputs exceed the measured losses, then the difference is assumed to be a result of groundwater discharge from the pond. In general, a small groundwater inflow into the pond was observed throughout the 12-month monitoring program with the exceptions of the months of May, August, and December when a small outflow occurred.

A graphical comparison of hydrologic inputs and losses for the Elder Creek pond is given on Figure 3-10. Approximately 94% of the hydrologic inputs originated as a result of runoff entering the pond through the evaluated inflows. Approximately 3.8% of the inputs were contributed by rainfall, with 1.8% contributed by groundwater inflow. Approximately 95% of the losses from the pond occurred through the outfall structure, with 3.9% lost due to evaporation and 1% lost due to groundwater discharge from the pond.

	HYDROLOGIC INPUTS (ac-ft)			HYI	DROLOGIC	LOSSES (a	ic-ft)	
MONTH	Rainfall	Runoff	Ground- water	Total	Evapor- ation	Outflow	Ground- water	Total
April	0.86	5.06	4.43	10.35	5.06	5.29	0.00	10.35
May	12.57	743.4	0.00	756.0	3.29	744.2	8.48	756.0
June	4.41	51.1	3.32	58.83	6.34	52.49	0.00	58.83
July	4.97	20.7	1.86	27.53	6.20	21.33	0.00	27.53
August	9.34	253.0	0.00	262.3	3.44	254.8	4.1	262.3
September	0.66	16.2	4.04	20.9	4.14	16.76	0.00	20.90
October	0.20	6.82	3.22	10.24	3.31	6.93	0.00	10.24
November	0.74	8.76	2.37	11.87	2.97	8.90	0.00	11.87
December	3.36	22.5	0.00	25.86	2.31	22.89	0.66	25.86
January	2.79	15.3	0.01	18.1	2.36	15.74	0.00	18.10
February	2.92	22.3	2.79	28.01	4.68	23.33	0.00	28.01
March	5.47	27.2	0.94	33.61	5.76	27.85	0.00	33.61
TOTALS:	48.29	1,192.3	23.0	1263.6	49.86	1200.5	13.2	1263.6

MONTHLY HYDROLOGIC INPUTS AND LOSSES AT THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

3.1.7 Hydraulic Residence Time

An estimate of the average annual detention time within the wet detention pond was conducted by dividing the estimated pond volume of 79.2 ac-ft (as summarized in Table 1-1) by the sum of the total monthly inputs (summarized in Table 3-12). Based upon this analysis, the mean annual residence time within the pond was approximately 23 days. It is interesting to note that the design calculations for the pond also predicted a mean residence time of approximately 23 days, although the calculations were intended to reflect wet season conditions.

3.2 <u>Chemical Characteristics of Monitored Inputs and Outputs</u>

A summary of sample collection activities conducted at the Elder Creek pond site from April 2009-March 2010 is given in Table 3-13. A total of 45 flow-weighted composite inflow samples was collected at the Elder Creek inflow (Site 1), with 28 flow-weighted composite samples collected at the Elder Ditch inflow at Site 2, 37 samples collected at the Elder Ditch inflow at Site 3, and 38 bulk precipitation samples. A total of 56 flow-weighted composite samples was also collected at the pond outflow. A complete listing of the results of laboratory analyses conducted on inflow, outflow, and bulk precipitation samples is given in Appendix B.

SAMPLE TYPE	NUMBER OF SAMPLES COLLECTED
Elder Creek Inflow (Site 1)	45
Elder Ditch Inflow (Site 2)	28
Elder Ditch Inflow (Site 3)	37
Pond Outfall	56
Bulk Precipitation	38
Vertical Field Profiles	34

SUMMARY OF SAMPLE COLLECTION PERFORMED AT THE ELDER CREEK POND SITE

In addition to the samples listed previously, 37 vertical field profiles were also collected within the pond to evaluate vertical variability in water quality characteristics. A complete listing of vertical field profiles collected at the Elder Creek pond site from April 2009-March 2010 is given in Appendix C.

3.2.1 Vertical Field Profiles

As discussed in Section 2.3, vertical field profiles of pH, temperature, specific conductivity, dissolved oxygen, and oxidation-reduction potential (ORP) were conducted near the center of the Elder Creek pond on approximately a weekly basis during the monitoring program. Field measurements were conducted at depths of 0.25 m and 0.5 m, and continued at 0.5-m intervals to the pond bottom. A complete listing of vertical field profiles collected during the monitoring program is given in Appendix C.

A graphical summary of vertical depth profiles collected in the Elder Creek pond from April 2009-March 2010 is given on Figure 3-11. The vertical profiles summarized in this figure reflect the average of profiles collected during winter, spring, summer, and fall conditions to illustrate seasonal changes in vertical water quality within the pond. For purposes of this analysis, winter is assumed to reflect the months of January-March, with spring reflecting the months of April-June, summer conditions reflected by July-September, and fall conditions reflected by October-December. Water depth within the pond ranged from approximately 2.5-3 m during the monitoring program.

In general, a slight decrease in temperature was observed with increasing water depth during a majority of the field monitoring events. The differences between top and bottom temperatures were most pronounced during spring conditions, although no evidence of thermal stratification was observed during any of the field monitoring events. Differences in temperature between top and bottom measurements ranged from approximately 1-2°C during winter, summer, and fall conditions. However, during spring conditions, the temperature difference between top and bottom measurements ranged from 3-4°C.

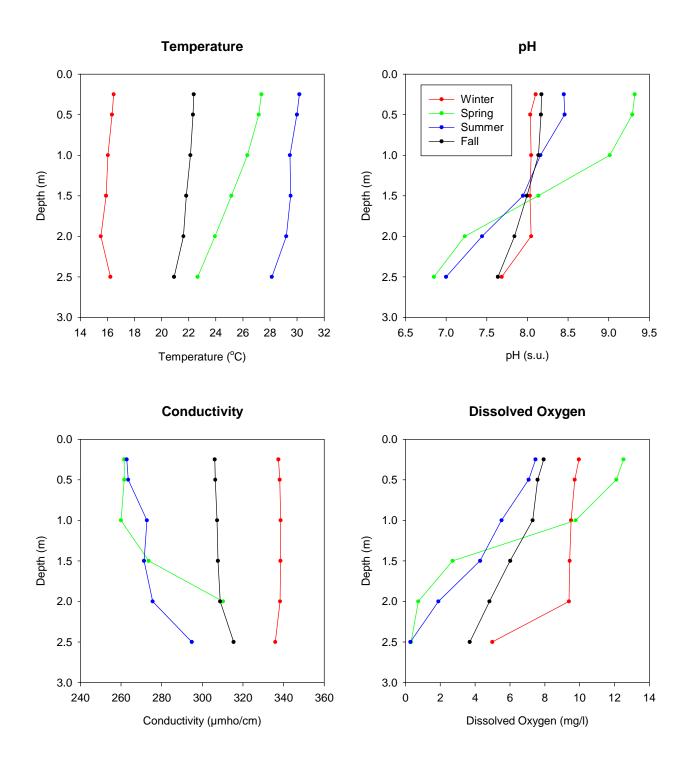


Figure 3-11. Compilation of Vertical Depth Profiles Collected in the Elder Creek Pond from April 1, 2009-March 31, 2010.

In general, a trend of decreasing pH with increasing water depth was observed during most of the monitoring events. Differences in pH between top and bottom measurements were relatively small during winter and fall conditions. This phenomenon, combined with the relatively isograde temperature profiles measured during these seasons, suggests that the pond exhibited well-mixed characteristics during winter and fall conditions. Differences in pH between top and bottom measurements were more pronounced during spring and summer conditions, with a pH range of approximately 6.7-9.4 during spring conditions and 7-8.2 during summer conditions.

Relative isograde conductivity measurements were observed within the Elder Creek during winter and fall conditions. A slight increase with increasing water depth was observed during both spring and summer conditions, although a decrease in conductivity was observed near the bottom sediments during the spring measurements. No evidence of significant internal release of ions is apparent in the measured conductivity values.

A general trend of decreasing dissolved oxygen concentrations with increasing water depth was observed during each of the seasonal conditions. The relative decrease in dissolved oxygen appears to be less during winter and fall conditions than during spring and summer conditions. Dissolved oxygen concentrations less than 2 mg/l were observed within the water column at water depths in excess of 2 m during spring and summer conditions. Aerobic conditions appear to exist throughout the water column of the pond during winter and fall conditions.

In general, the Elder Creek pond appears to be relatively well-mixed, particularly during winter and fall conditions, as evidenced by the relatively isograde conditions observed for temperature, pH, and conductivity during these periods. Dissolved oxygen levels within the pond appear to be adequate to support decomposition processes for biologically degradable materials and for support of aquatic wildlife. Areas of low dissolved oxygen were observed near the pond bottom during spring and summer conditions, although anoxic conditions appear to be limited to the bottom 0.5 m of the pond. No significant increases in specific conductivity were observed in lower layers of the pond, suggesting that internal recycling is not significant within the pond at this time.

3.2.2 Pond Inflows

Inflow into the Elder Creek wet detention pond was monitored at three significant tributaries which enter the pond. A complete listing of the characteristics of each of the inflow samples collected at the Elder Creek pond site is given in Appendix B.1. A discussion of the chemical characteristics of inflows at each of these sites is given in the following sections.

3.2.2.1 Elder Creek Inflow (Site 1)

A summary of laboratory measurements conducted on stormwater runoff samples collected at the Elder Creek inflow (Site 1) from April 2009-March 2010 is given in Table 3-14. Runoff inputs into the pond were approximately neutral in pH, with a mean pH value of 7.50, and well buffered, with a mean alkalinity of 125 mg/l. The measured alkalinity values at this site are somewhat higher than alkalinity values commonly observed in tributaries in urban areas and suggest an alkaline input somewhere within the basin area. Measured conductivity values are similar to values commonly observed in urban runoff.

SUMMARY OF LABORATORY MEASUREMENTS CONDUCTED ON ELDER CREEK INFLOW (SITE 1) SAMPLES COLLECTED FROM THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

PARAMETER	UNITS	MEAN	RANGE OF VALUES
pН	s.u.	7.50	6.86 - 8.20
Conductivity	µmho/cm	303	179 – 434
Alkalinity	mg/l	125	61.6 – 187
NH ₃	µg/l	95	<5 - 280
NO _x	µg/l	157	<5 - 674
Diss. Organic N	μg/l	448	106 - 1002
Particulate N	µg/l	453	165 – 1813
Total N	μg/l	1153	516 - 2929
SRP	µg/l	237	49 - 538
Diss. Organic P	µg/l	32	1 – 241
Particulate P	μg/l	307	18 – 1618
Total P	µg/l	576	199 – 1870
TSS	mg/l	57.2	2.8 - 378
Turbidity	NTU	22.4	2.5 - 201

Low levels of inorganic nitrogen species were observed in the Elder Creek inflow, with a mean ammonia concentration of 95 μ g/l and a mean NO_x concentration of 157 μ g/l. The dominant nitrogen species present were organic nitrogen and particulate nitrogen, each of which contributed 39% of the measured total nitrogen. Particulate nitrogen concentrations measured in the Elder Creek inflow are somewhat lower than commonly observed in urban runoff, and suggest deposition of nitrogen within the channel prior to reaching the Elder Creek pond site. The overall mean total nitrogen concentration of 1153 μ g/l is somewhat lower than nitrogen levels commonly observed in urban runoff.

Extremely elevated levels of total phosphorus were observed in the Elder Creek inflow. The mean soluble reactive phosphorus (SRP) concentration of 237 μ g/l is 2-5 times higher than SRP concentrations commonly observed in urban runoff. The dominant phosphorus species measured at the site was particulate phosphorus which comprised approximately 53% of the total phosphorus measured. The mean total phosphorus concentration of 576 μ g/l is approximately twice the total phosphorus value commonly observed in tributary inflows in urban areas. Moderate to elevated levels of TSS and turbidity were observed at the Elder Creek inflow site, with a mean TSS concentration of 57.2 mg/l and a mean turbidity value of 22.4 NTU.

3.2.2.2 Elder Ditch Inflow (Site 2)

A summary of laboratory measurements conducted on inflow samples collected from the Elder Ditch inflow at Site 2 over the period from April 2009-March 2010 is given in Table 3-15. Runoff inputs at Site 2 were approximately neutral in pH, with a mean pH value of 7.54. Inflows into the pond from Site 2 were extremely well buffered, with a mean alkalinity of 147 mg/l. This value is substantially higher than alkalinity values commonly observed in urban runoff, and suggests an alkaline input within the basin area. The mean measured conductivity value of 365 μ mho/cm is typical of values commonly observed in urban runoff.

TABLE 3-15

SUMMARY OF LABORATORY MEASUREMENTS CONDUCTED ON ELDER DITCH INFLOW (SITE 2) SAMPLES COLLECTED FROM THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

PARAMETER	UNITS	MEAN	RANGE OF VALUES
pH	s.u.	7.54	7.08 - 8.41
Conductivity	µmho/cm	364	168 - 571
Alkalinity	mg/l	147	64.2 - 240
NH_3	µg/l	92	<5 - 329
NO _x	µg/l	85	<5 - 346
Diss. Organic N	µg/l	471	251 - 750
Particulate N	µg/l	213	<25 - 545
Total N	µg/l	860	549 - 1284
SRP	µg/l	298	27 - 632
Diss. Organic P	µg/l	28	1 – 254
Particulate P	µg/l	169	27 - 380
Total P	µg/l	494	162 - 928
TSS	mg/l	10.7	1.6 - 31.0
Turbidity	NTU	8.3	1.7 - 25.2

Inflows from Elder Ditch at Site 2 were characterized by low levels of inorganic nitrogen species, with a mean ammonia concentration of 92 μ g/l and mean NO_x concentration of 85 μ g/l. The dominant nitrogen species present at this site was dissolved organic nitrogen which comprised 55% of the total nitrogen measured. Particulate nitrogen comprised approximately 25% of the total nitrogen, with the remainder contributed by ammonia and NO_x. The mean total nitrogen concentration of 860 μ g/l is less than half of the nitrogen concentrations commonly observed in urban runoff.

Elevated levels of total phosphorus were observed at this inflow, particularly for SRP. The mean SRP concentration of 298 μ g/l is 2-6 times higher than SRP concentrations commonly observed in urban runoff. SRP reflects the dominant phosphorus species at this site, comprising approximately 60% of the total phosphorus measured at Site 2. Approximately 34% of the phosphorus was contributed by particulate phosphorus, with the remainder by dissolved organic phosphorus. The mean total phosphorus concentration of 494 μ g/l is substantially higher than phosphorus concentrations commonly observed in urban runoff.

Low to moderate levels of TSS and turbidity were observed at this site, with a mean TSS concentration of 10.7 mg/l and a mean turbidity of 8.3 NTU. These values are somewhat lower than concentrations commonly observed in urban runoff.

3.2.2.3 Elder Ditch Inflow (Site 3)

A summary of laboratory measurements conducted on Elder Ditch inflow at Site 3 over the period from April 2009-March 2010 is given in Table 3-16. Inflow collected at this site was approximately neutral in pH, with a mean pH value of 7.31, and well buffered, with a mean alkalinity of 105 mg/l. The mean conductivity value of 310 μ mho/cm is typical of values commonly observed in urban runoff.

TABLE 3-16

SUMMARY OF LABORATORY MEASUREMENTS CONDUCTED ON ELDER DITCH INFLOW (SITE 3) SAMPLES COLLECTED FROM THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

PARAMETER	UNITS	MEAN	RANGE OF VALUES
рН	s.u.	7.31	6.76 – 7.76
Conductivity	µmho/cm	310	91 - 695
Alkalinity	mg/l	105	29.4 - 232
NH ₃	µg/l	43	<5 - 182
NO _x	µg/l	17	<5 - 134
Diss. Organic N	µg/l	481	179 – 903
Particulate N	µg/l	157	20 - 513
Total N	µg/l	698	316 - 1088
SRP	µg/l	44	4 - 268
Diss. Organic P	µg/l	11	1 – 39
Particulate P	µg/l	30	2 - 75
Total P	µg/l	85	12 - 340
TSS	mg/l	13.3	1.0 - 128
Turbidity	NTU	6.9	0.6 - 56.6

Low levels of inorganic nitrogen species were observed at this site, with a mean ammonia concentration of 43 μ g/l and a mean NO_x of 17 μ g/l. Dissolved organic nitrogen was the dominant nitrogen species at this site, comprising approximately 69% of the total nitrogen measured. Particulate nitrogen contributed approximately 22% of the total nitrogen, with the remainder contributed by ammonia and NO_x. The mean total nitrogen concentration of 698 μ g/l was substantially lower than nitrogen values commonly observed in urban runoff.

In contrast to the trends observed at Sites 1 and 2, relatively low levels of total phosphorus were measured at the inflow at Site 3. The largest phosphorus species at this site was SRP which contributed approximately 52% of the total phosphorus. The mean SRP concentration of 44 μ g/l is typical of values commonly observed in urban runoff. Particulate phosphorus contributed approximately 35% of the total phosphorus at this site. The mean total phosphorus concentration of 85 μ g/l reflects a low value for urban runoff.

Low to moderate levels of both TSS and turbidity were observed at this site, with a mean TSS concentration of 13.3 mg/l and mean turbidity of 6.9 NTU. These values are relatively low compared with concentrations commonly observed in urban runoff.

3.2.2.4 Comparison of Inflow Characteristics

A comparison of mean characteristics of significant inflows to the Elder Creek pond is given on Table 3-17. In general, the highest mean concentrations of nitrogen and phosphorus were observed at the Elder Creek inflow at Site 1, with concentrations measured at the Elder Ditch inflow at Site 2 slightly lower than values measured at Site 1. Total nitrogen concentrations measured at each of these sites are somewhat lower than values commonly observed in urban runoff, while mean total phosphorus concentrations are substantially higher. The lowest mean values for nutrients were measured at the Elder Ditch inflow at Site 3 which exhibited a slightly lower total nitrogen concentration and substantially lower total phosphorus concentrations compared with characteristics measured at Sites 1 and 2.

PARAMETER	UNITS	ELDER CREEK (SITE 1)	ELDER DITCH (SITE 2)	ELDER DITCH (SITE 3)
рН	s.u.	7.50	7.54	7.31
Conductivity	µmho/cm	303	364	310
Alkalinity	mg/l	125	147	105
NH ₃	µg/l	95	92	43
NO _x	µg/l	157	85	17
Diss. Organic N	µg/l	448	471	481
Particulate N	µg/l	453	213	157
Total N	µg/l	1153	860	698
SRP	µg/l	237	298	44
Diss. Organic P	µg/l	32	28	11
Particulate P	µg/l	307	169	30
Total P	µg/l	576	494	85
TSS	mg/l	57.2	10.7	13.3
Turbidity	NTU	22.4	8.3	6.9

COMPARISON OF MEAN CHEMICAL CHARACTERISTICS OF SIGNIFICANT INFLOWS TO THE ELDER CREEK POND

3.2.3 <u>Bulk Precipitation</u>

A total of 38 bulk precipitation samples was collected at the Elder Creek pond site during the 12-month monitoring program. A complete listing of the characteristics of each of the monitored bulk precipitation samples is given in Appendix B.3.

A summary of laboratory measurements conducted on bulk precipitation samples collected from the Elder Creek pond site over the period from April 2009-March 2010 is given on Table 3-18. The mean pH value of 5.63 measured in bulk precipitation is typical of pH values commonly observed in urban precipitation. Precipitation collected at the site was poorly buffered, with low conductivity values.

Measured nitrogen concentrations in the bulk precipitation samples ranged from low to elevated during the field monitoring program. Bulk precipitation collected at the site was characterized by elevated mean concentrations of ammonia, NO_x, and dissolved organic nitrogen. In general, the mean total nitrogen concentration of 1295 μ g/l measured in bulk precipitation at the site is approximately 2-3 times higher than nitrogen concentrations commonly observed in precipitation from urban areas.

SUMMARY OF LABORATORY MEASUREMENTS CONDUCTED
ON BULK PRECIPITATION SAMPLES COLLECTED FROM THE
ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

PARAMETER	UNITS	MEAN	RANGE OF VALUES
pН	s.u.	5.63	4.47 - 7.02
Conductivity	µmho/cm	22	7 – 95
Alkalinity	mg/l	4.4	0.1 – 19.8
NH ₃	µg/l	464	3 - 3936
NO _x	µg/l	224	4 – 557
Diss. Organic N	µg/l	461	<25 - 3273
Particulate N	µg/l	148	<25 - 830
Total N	µg/l	1295	111 - 6917
SRP	µg/l	104	1 - 829
Diss. Organic P	µg/l	13	1 – 101
Particulate P	µg/l	22	1 - 71
Total P	µg/l	136	2 - 900
TSS	mg/l	4.2	0.1 - 23.0
Turbidity	NTU	1.7	0.6 - 6.9

Measured total phosphorus concentrations in bulk precipitation were also elevated compared with concentrations observed in other watersheds. The dominant phosphorus species was SRP which comprised approximately 76% of the total phosphorus measured at the site. The mean total phosphorus concentration of 136 μ g/l in bulk precipitation is approximately 5 times higher than phosphorus concentrations normally observed in precipitation collected from urban areas.

In general, bulk precipitation collected at the Elder Creek pond site exhibited relatively low concentrations for both TSS and turbidity, with values typical of precipitation measured in other parts of Central Florida.

Graphical comparisons of the chemical characteristics of bulk precipitation samples collected at the Elder Creek pond site were developed for general parameters, nitrogen species, and phosphorus species in the form of Tukey box plots, also often called "box and whisker plots". The bottom line of the box portion of each plot represents the lower quartile, with 25% of the data points falling below this value. The upper line of the box represents the 75% upper quartile, with 25% of the data falling above this value. The **blue** horizontal line within the box represents the median value, with 50% of the data falling both above and below this value. The **red** horizontal line within the box represents the mean of the data points. The vertical lines, also known as "whiskers", represent the 5 and 95 percentiles for the data sets. Individual values which fall outside of the 5-95 percentile range, sometimes referred to as "outliers", are indicated as **red dots**.

SEMINOLE COUNTY \ ELDER CREEK RSF REPORT

A statistical comparison of general parameters measured in bulk precipitation collected at the Elder Creek pond site is given on Figure 3-12. In general, bulk precipitation samples were characterized by a relatively high degree of variability for pH, alkalinity, and conductivity, with measured values for each of these parameters higher than concentrations commonly observed in bulk precipitation at other locations. In contrast, measured turbidity values in bulk precipitation were relatively low in value.

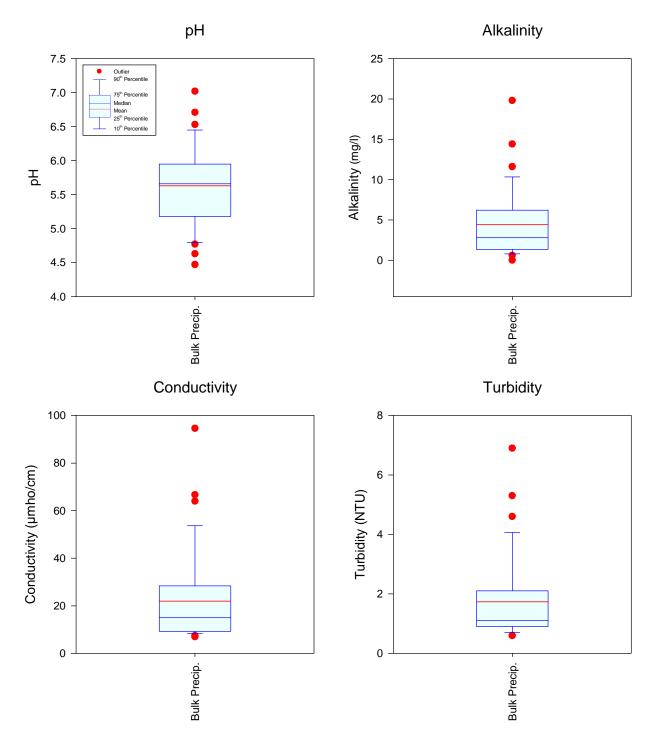


Figure 3-12. Statistical Comparison of General Parameters Measured in Bulk Precipitation at the Elder Creek Pond Site.

A statistical comparison measured in bulk precipitation at the Elder Creek site is given on Figure 3-13. The majority of measured concentrations for ammonia, NO_x , particulate nitrogen, and total nitrogen fall within a relatively narrow range of values. However, substantially elevated values for these parameters were observed during 2-3 events measured at the site.

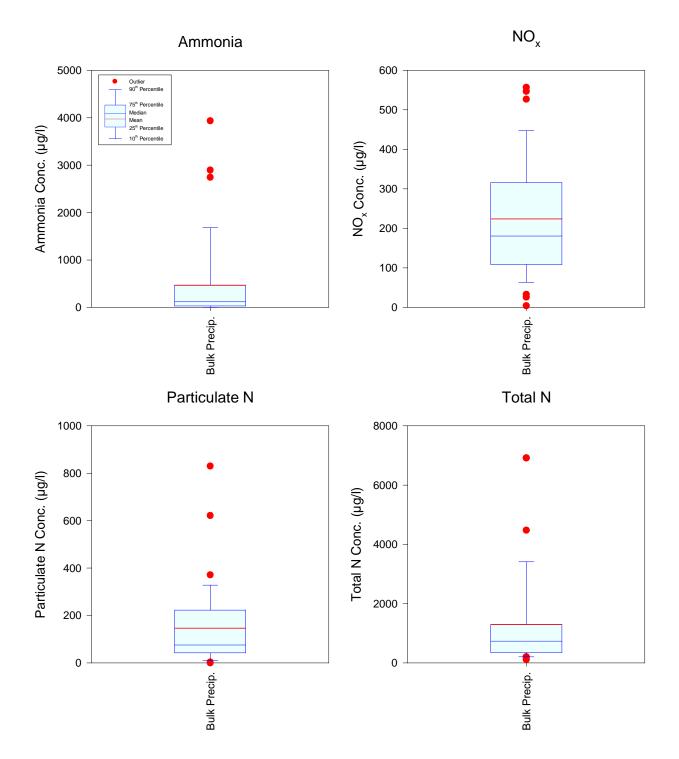


Figure 3-13. Statistical Comparison of Nitrogen Species Measured in Bulk Precipitation at the Elder Creek Pond Site.

A statistical comparison of phosphorus species measured in bulk precipitation at the Elder Creek site is given on Figure 3-14. In general, the majority of collected samples exhibited measured concentrations for SRP, dissolved organic phosphorus, particulate phosphorus, and total phosphorus which fell within a relatively narrow range and were relatively low in value. However, similar to the trend observed for nitrogen species, elevated levels of phosphorus species were also observed during 2-3 of the monitored bulk precipitation events.

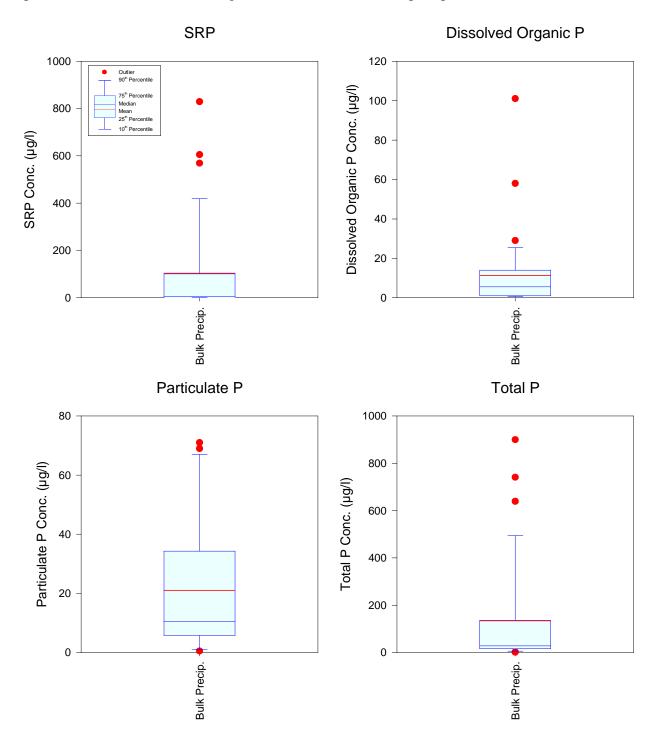


Figure 3-14. Statistical Comparison of Phosphorus Species Measured in Bulk Precipitation at the Elder Creek Pond Site.

3.2.4 Pond Outflow

A total of 56 flow-weighted composite outflow samples were collected at the Elder Creek pond site during the 12-month monitoring program. A complete listing of the characteristics of each of the monitored outflow samples is given in Appendix B.2. A summary of laboratory measurements conducted on outflow samples collected at the Elder Creek pond site is given on Table 3-19. The collected outflow samples exhibited pH values ranging from approximately neutral to alkaline, with an overall mean pH value of 7.62. Discharges from the pond were well buffered, with a mean alkalinity of 110 mg/l and conductivity values similar to those observed in other wet detention ponds.

TABLE 3-19

SUMMARY OF LABORATORY MEASUREMENTS CONDUCTED ON POND OUTFLOW SAMPLES COLLECTED FROM THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

PARAMETER	UNITS	MEAN	RANGE OF VALUES
pН	s.u.	7.62	6.67 – 9.88
Conductivity	µmho/cm	282	180 - 353
Alkalinity	mg/l	110	66.2 - 151
NH ₃	μg/l	93	<5 - 582
NO _x	µg/l	51	<5 - 427
Diss. Organic N	µg/l	507	124 - 1022
Particulate N	µg/l	489	31 - 1408
Total N	µg/l	1140	455 - 2523
SRP	µg/l	177	5 - 355
Diss. Organic P	µg/l	22	1 – 247
Particulate P	µg/l	94	3 - 312
Total P	µg/l	293	57 – 519
TSS	mg/l	13.1	0.8 - 51.7
Turbidity	NTU	7.4	1.0 - 30.1

Discharges from the pond were characterized by relatively low levels of inorganic nitrogen species, with a mean ammonia concentration of 93 μ g/l and mean NO_x concentration of 51 μ g/l. Dissolved organic nitrogen appears to be the dominant nitrogen species in discharges from the pond, with the mean value of 507 μ g/l comprising 44% of the nitrogen in the discharge. Particulate nitrogen comprised approximately 43% of the total nitrogen discharged from the pond.

Relatively elevated levels of SRP and total phosphorus were observed in discharges from the wet detention pond. The mean SRP concentration of 177 μ g/l is substantially higher than SRP concentrations commonly observed in the discharges from wet detention ponds which often range from 1-10 μ g/l. The mean measured values for dissolved organic phosphorus and particulate phosphorus are also substantially higher than concentrations commonly observed in pond discharges. The mean total phosphorus concentration of 293 μ g/l in the pond discharge is more than 10 times higher than total phosphorus concentrations commonly observed in discharges from wet detention ponds.

In general, relatively low levels of turbidity were observed in discharges from the pond, with a mean of 7.4 NTU. Low to moderate levels of TSS were also observed in pond discharges, with a mean of 13.1 mg/l.

3.2.5 Comparison of Inflow and Outflow Characteristics

A statistical comparison of general parameters measured in significant inflows and outflow at the Elder Creek pond site during the 12-month monitoring program is given on Figure 3-15. Variability in measured pH values appear to be very similar between the three monitored inflow tributary sites. Although the pond outflow appears to have a similar median and mean value, discharges from the pond are characterized by periodically elevated pH values which are presumably related to the high rate of algal productivity occurring within the pond. A similar degree of variability also appears to exist for measured alkalinity concentrations at the three tributary inflow sites. In contrast, a relatively narrow range of variability was observed for measured alkalinity values at the outflow. A similar pattern appears to exist for conductivity, with a similar degree of variability observed at each of the three inflow monitoring sites. In contrast, conductivity measurements at the outflow appear to be relatively consistent and fall within a relatively narrow range. Measured turbidity values at both the inflow and outflow monitoring sites were typically low in value although a few substantially elevated turbidity values were monitored at inflow Sites 1 and 3.

A statistical comparison of nitrogen species measured in the tributary inflows and pond outflow samples is given on Figure 3-16. In general, measured concentrations of ammonia, particulate nitrogen, and total nitrogen appear to be similar between inflow Site 1 and the outflow from the pond. This relationship would be expected since inflow Site 1 represents the largest inflow into the pond on an annual basis. Measured nitrogen concentrations at inflow Sites 2 and 3 appear to be lower in value than observed in either Site 1 or the pond outfall.

A statistical comparison of phosphorus species measured in the tributary inflows and pond outflow samples is given on Figure 3-17. In general, measured concentrations of SRP, organic phosphorus, particulate phosphorus, and total phosphorus in the outfall appear to be lower in value than inflow concentrations measured at Sites 1 and 2, but higher in value than phosphorus concentrations measured at inflow Site 3. The variability in measured phosphorus concentrations appears to be lower at the outfall than observed at inflow Site 1 which represents the primary inflow into the pond.

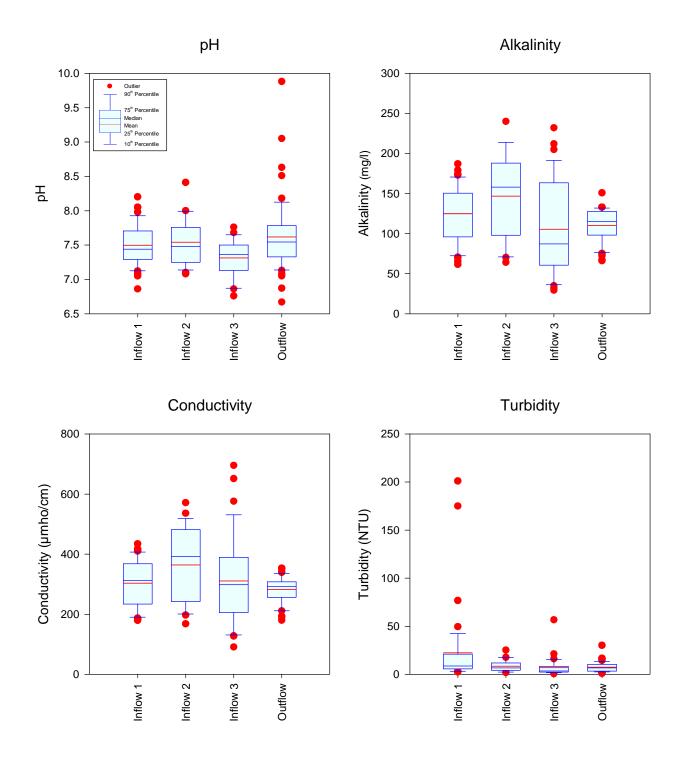


Figure 3-15. Statistical Comparison of General Parameters Measured in Pond Inflows and Outflows.

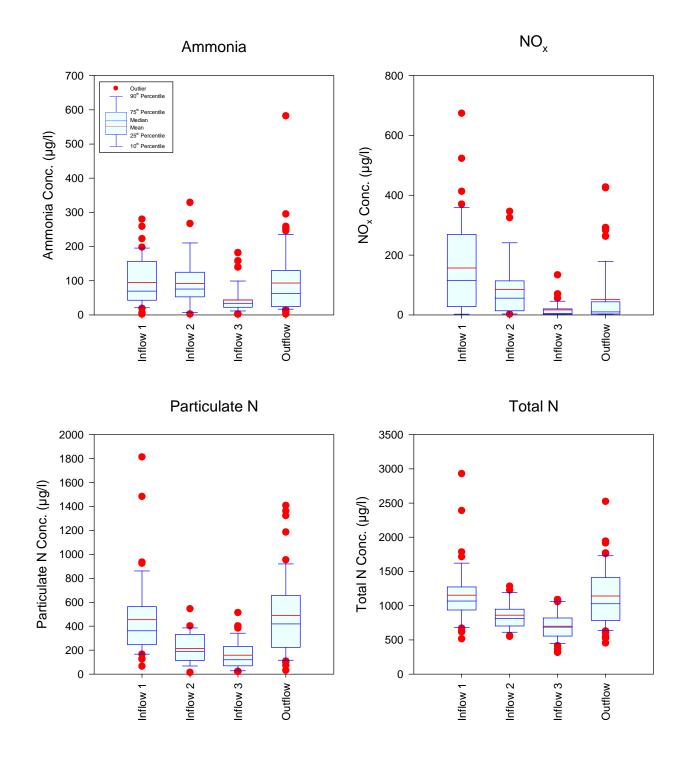


Figure 3-16. Statistical Comparison of Nitrogen Species Measured in Pond Inflows and Outflows.

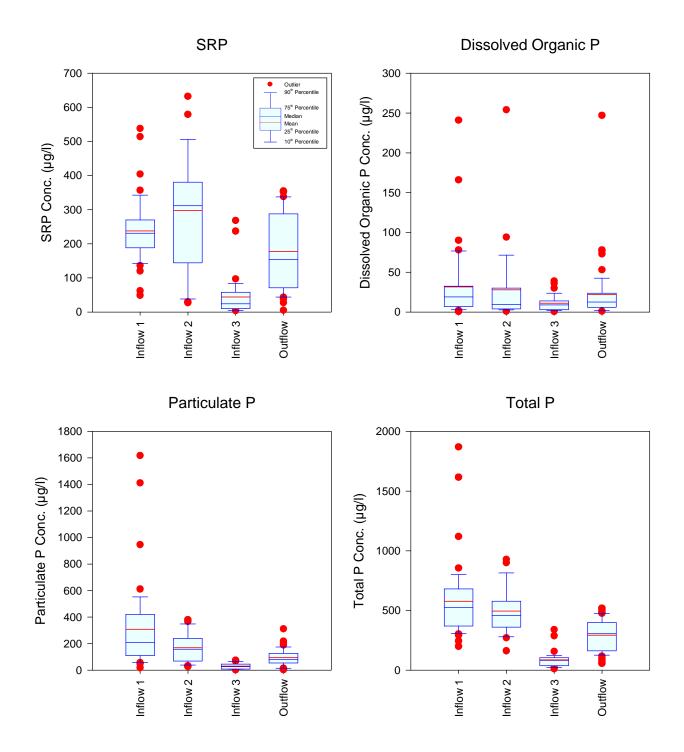


Figure 3-17. Statistical Comparison of Phosphorus Species Measured in Pond Inflows and Outflows.

3.3 Mass Inputs and Losses

Mass loadings were calculated for each of the evaluated inputs and losses at the Elder Creek pond over the 12-month monitoring program from April 2009-March 2010. Mass inputs into the pond were calculated for inflows at Sites 1-3, and the Elder Road inflows, as well as bulk precipitation. Mass losses were calculated for discharges through the pond outfall structure.

Due to the large degree of variability in the hydrologic budget for the pond, mass inputs and losses were calculated on a monthly basis. Information on monthly hydrologic inputs and losses was obtained from the information provided in Tables 3-8 and 3-12. Estimates of monthly water quality characteristics were calculated by averaging the water quality data summarized in Appendix B for inflow samples, outflow samples, and bulk precipitation on a monthly basis. Samples with collection periods that extended into two months are assumed to be associated with the month representing the largest proportion of the time interval. If samples were not collected at a site during a monthly period for which measurable flow was recorded, the mean concentration for a given parameter is calculated as the mean of concentrations measured during the preceding and following monthly periods.

A summary of mean monthly concentrations of measured parameters in pond inflow samples collected at Sites 1-3 is given on Table 3-20. Mean monthly concentrations are provided for species of nitrogen and phosphorus, as well as TSS. In general, a high degree of variability is apparent in monthly concentrations measured at each of the three inflow sites, although a distinct seasonal trend is not apparent. Mean monthly concentrations for measured parameters are not provided for Site 2 during October since no flow was observed at Site 2 during that month.

Mean monthly concentrations for TSS and species of nitrogen and phosphorus in bulk precipitation are given on Table 3-21. Nutrient concentrations in bulk precipitation appear to be substantially higher during October-January compared with values measured during the remaining portions of the year. No explanation is apparent for these elevated concentrations, although it is interesting to note that elevated levels of nutrients were also observed during this period at some of the monitored inflow sites.

A summary of mean monthly concentrations for TSS and species of nitrogen and phosphorus in pond outflow samples is given on Table 3-22. Discharges from the pond appear to be much more consistent in value than observed in the pond inflows due to the attenuation effects provided by the pond. In general, concentrations for many parameters in the outflow appear to be higher during rainy season conditions compared with months associated with low rainfall.

Estimates of monthly mass inputs and losses at the Elder Creek pond were calculated for TSS and species of nitrogen and phosphorus during the 12-month monitoring program. These monthly mass loadings were calculated by multiplying the mean monthly concentrations for the inputs and losses (summarized in Tables 3-20 to 3-22) times the measured monthly hydrologic inputs or losses for the pond (summarized in Tables 3-8 and 3-12). Chemical characteristics of inflows through the small Elder Road inflows are assumed to be similar to characteristics measured at the Elder Ditch inflow at Site 3. The calculated monthly mass loadings were then summed to provide an estimate of annual mass loadings for each of these evaluated inputs and losses.

MEAN MONTHLY CONCENTRATIONS FOR MEASURED PARAMETERS IN POND INFLOW SAMPLES

SITE	MONTH	NH3 (µg/l)	NO _x (µg/l)	DISS ORG N (µg/l)	PART N (µg/l)	TOTAL N (µg/l)	SRP (µg/l)	DISS ORG P (µg/l)	PART P (µg/l)	TOTAL P (µg/l)	TSS (mg/l)
	April	146	143	440	688	1417	229	48	236	512	37
	May	120	130	577	529	1355	288	25	345	658	80
	June	118	191	377	146	831	227	131	85	442	5
	July	23	149	461	450	1083	199	17	539	755	79
	August	105	202	306	355	967	274	8	193	475	21
1	September	77	40	485	629	1231	199	13	255	467	64
1	October	60	21	674	1056	1811	208	18	384	609	59
	November	43	3	862	1483	2391	216	23	513	752	54
	December	61	82	333	333	808	241	19	292	553	32
	January	80	222	324	408	1033	314	34	248	595	52
	February	129	345	500	158	1132	208	33	283	524	39
	March	119	130	492	431	1172	170	59	353	582	123
										-	
	April	81	66	410	104	661	404	23	72	499	1.9
	May	28	71	629	226	955	310	15	74	400	7.3
	June	75	179	431	182	867	254	73	222	549	14.9
	July	63	6	525	257	850	452	56	165	672	13.1
	August	83	110	320	172	685	302	4	96	401	7.0
2	September	157	45	441	545	1188	490	17	296	803	9.4
2	October	1									
	November	159	51	504	376	1089	419	11	244	674	12.8
	December	126	3	268	221	618	122	48	206	376	10.6
	January	160	56	567	206	989	348	5	192	545	16.3
	February	227	160	386	317	1089	65	12	331	407	12.0
	March	99	52	494	187	831	202	25	239	466	16.2
	April	29	10	497	199	735	59	15	45	119	24.2
	May	29	8	534	149	720	105	7	31	143	4.6
	June	12	9	647	204	872	31	9	23	63	7.0
	July	25	26	436	165	652	52	13	38	103	13.9
	August	137	25	332	197	691	111	2	31	144	4.0
2	September	51	3	683	74	809	22	8	20	50	2.0
3	October	49	12	442	84	587	25	10	19	54	4.8
	November	58	25	439	89	612	27	8	15	50	5.0
	December	48	22	201	94	364	28	12	18	58	7.7
	January	68	38	437	94	636	29	7	11	47	5.1
	February	37	14	521	110	682	24	11	25	60	11.9
	March	30	11	460	249	750	13	24	58	95	43.8

1. No measured inflow during this month

MONTH	NH3 (µg/l)	NO _x (µg/l)	DISS ORG N (µg/l)	PART N (µg/l)	TOTAL N (µg/l)	SRP (µg/l)	DISS ORG P (µg/l)	PART P (µg/l)	TOTAL P (µg/l)	TSS (mg/l)
April	532	350	454	238	1574	91	20	47	158	10.9
May	92	132	161	153	538	1	7	15	23	2.0
June	49	176	275	429	929	102	6	38	146	7.1
July	10	117	72	54	253	1	3	7	11	2.8
August	32	219	65	43	359	1	4	10	15	0.9
September	38	124	1143	55	1360	34	3	16	53	1.9
October	1987	335	1687	130	4139	431	12	33	476	3.8
November	3936	547	2230	204	6917	829	21	50	900	5.7
December	1200	318	741	147	2406	218	33	36	287	6.1
January	1238	276	1050	129	2693	344	4	17	365	2.9
February	279	238	145	96	758	44	20	8	72	1.5
March	155	204	205	75	639	17	14	9	40	5.1

MEAN MONTHLY CONCENTRATIONS FOR MEASURED PARAMETERS IN BULK PRECIPITATION

TABLE 3-22

MEAN MONTHLY CONCENTRATIONS FOR MEASURED PARAMETERS IN POND OUTFLOW

MONTH	NH3 (µg/l)	NO _x (µg/l)	DISS ORG N (µg/l)	PART N (µg/l)	TOTAL N (µg/l)	SRP (µg/l)	DISS ORG P (µg/l)	PART P (µg/l)	TOTAL P (µg/l)	TSS (mg/l)
April	94	34	563	726	1417	88	13	116	217	14.9
May	133	13	695	447	1288	143	13	79	235	10.4
June	19	76	428	316	839	294	8	74	376	12.1
July	75	121	566	702	1464	341	23	87	451	10.6
August	278	96	420	435	1229	214	13	149	376	11.1
September	138	104	514	364	1120	313	42	97	452	9.6
October	39	9	651	646	1345	212	22	152	386	15.7
November	75	94	507	1156	1832	195	100	115	410	27.2
December	88	35	434	401	958	89	14	94	197	13.2
January	97	35	397	114	643	125	10	24	159	11.8
February	47	34	374	392	847	56	12	80	148	20.1
March	28	8	384	324	744	61	19	67	147	8.3

A summary of the calculated mass inputs and losses at the Elder Creek pond from April 2009-March 2010 is given on Table 3-23. The values summarized in this table reflect the sum of the calculated monthly loadings discussed previously. Site 1 is clearly the dominant source of loadings to the Elder Creek pond, contributing the vast majority of mass loadings for the evaluated parameters. Substantially smaller loadings are contributed by inflow Sites 2 and 3, as well as the Elder Road drainage system. A graphical comparison of inputs of total nitrogen and total phosphorus to the Elder Creek pond is given on Figure 3-18.

TABLE 3-23

		OUTFALL				
PARAMETER	Site 1	Site 2	Site 3	Elder Rd.	Precip.	LOSSES (kg)
NH ₃	115	6.5	16.4	0.08	14.1	224
NO _x	153	11.1	3.9	0.02	11.9	56.5
Diss. Organic N	512	72.5	151	0.70	16.0	884
Particulate N	487	28.8	49.4	0.25	7.8	652
Total N	1,266	119	220	1.05	49.6	1816
SRP	280	40.6	29.3	0.12	3.1	247
Diss. Organic P	27.6	2.1	0.7	0.01	0.5	21.0
Particulate P	310	12.7	9.4	0.05	0.9	139
Total P	618	55.4	40.9	0.18	4.5	407
TSS	64,007	1,057	1,876	14.4	200	16,418

CALCULATED MASS INPUTS AND LOSSES AT THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

3.4 Pond Performance Efficiency

Mass removal efficiencies were calculated for TSS and each of the monitored species of nitrogen and phosphorus. Mass removal efficiencies were calculated on an annual basis using the following equation:

$$Mass Removal = \frac{Input Mass - Outflow Mass}{Input Mass} \times 100$$

A summary of mass inputs and losses and mass removal efficiencies for the Elder Creek pond is given on Table 3-24. Mass inputs into the pond reflect the sum of the mass inputs summarized on Table 3-23, while mass losses from the pond reflect the outfall losses summarized on Table 3-23.

3-43

SEMINOLE COUNTY \ ELDER CREEK RSF REPORT

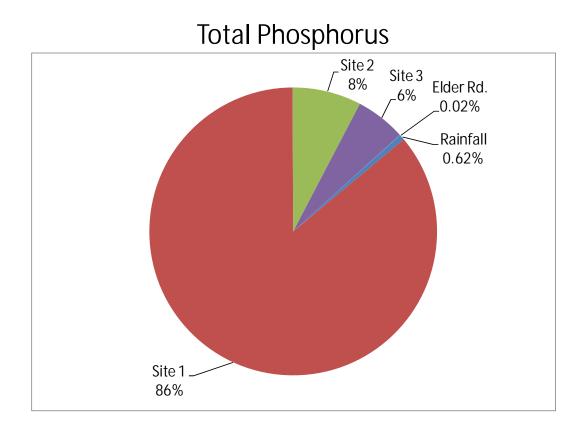


Figure 3-18. Comparison of Inputs of Total Nitrogen and Total Phosphorus to the Elder Creek Pond.

PARAMETER	TOTAL MASS INPUTS (kg)	OUTFALL LOSSES (kg)	REMOVAL EFFICIENCY (%)
NH ₃	152	224	-48
NO _x	180	56.5	69
Diss. Organic N	751	884	-18
Particulate N	573	652	-14
Total N	1,656	1816	-10
SRP	354	247	30
Diss. Organic P	30.7	21.0	32
Particulate P	333	139	58
Total P	719	408	43
TSS	67,060	16,418	76

ESTIMATED MASS REMOVAL EFFICIENCY FOR THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

In general, the pond exhibited a poor removal efficiency for the majority of nitrogen species. A net export of ammonia was observed from the pond, although mass loadings of NO_x were reduced by approximately 69%. Discharges of both dissolved organic nitrogen and particulate nitrogen exceeded the combined input mass for these parameters, with an 18% increase in dissolved organic nitrogen and a 14% increase in particulate nitrogen during migration through the pond. Overall, the Elder Creek pond received approximately 1656 kg of total nitrogen and exported 1816 kg, resulting in a mass increase of approximately 10% within the pond.

In contrast, positive removal efficiencies were obtained for all monitored phosphorus species. A 30% load reduction was achieved for SRP, with a 32% load reduction for dissolved organic phosphorus and a 58% load reduction for particulate phosphorus. Overall, the pond received approximately 719 kg of total phosphorus while discharging 408 kg, a removal efficiency of approximately 43%. This value is slightly lower than removal efficiencies commonly observed for total phosphorus in wet detention ponds.

In general, the Elder Creek pond provided a relatively good removal efficiency for TSS. During the 12-month monitoring program, approximately 67,060 kg of TSS entered the Elder Creek pond from the evaluated inputs, with 16,418 kg of TSS released through the outfall structure. This results in an estimated removal efficiency of approximately 76% for TSS. This value is also slightly lower than TSS removal efficiencies commonly observed in wet detention ponds.

3.5 Pollutant Removal Costs

Estimates of mass removal costs were generated for total phosphorus and TSS in the Elder Creek stormwater treatment facility. Annual mass removal costs were not calculated for total nitrogen since no removal of total nitrogen occurred within the pond.

A summary of design and construction costs for the Elder Creek stormwater treatment facility is given on Table 3-25, based upon information provided by Seminole County. Design fees for the wet detention pond were \$249,263, with a construction cost of \$3,171,160. The total cost for the facility, including both design and construction, is \$3,420,423.

TABLE 3-25

SUMMARY OF DESIGN AND CONSTRUCTION COSTS FOR THE ELDER CREEK STORMWATER TREATMENT FACILITY

PARAMETER	COST ¹ (\$)
Design	249,263
Construction	3,171,160
TOTAL:	3,420,423

1. Information provided by Seminole County

Mass removal costs for the Elder Creek stormwater treatment facility are calculated based upon a 20-year lifecycle analysis. Calculated 20-year present worth costs for the Elder Creek facility are summarized on Table 3-26. Present worth costs were calculated using the relationship summarized below:

PW = Construction Cost + 20-Year O&M Cost (P/A, 4%, 20-years)

The present worth cost analysis assumes an interest rate of 4% and a 20-year lifecycle analysis. This analysis assumes an annual maintenance cost of \$20,000 for periodic mowing and general upkeep of the facility. Based upon this analysis, the 20-year present worth cost for the Elder Creek stormwater treatment facility is \$3,692,223.

TABLE 3-26

CALCULATED 20-YEAR PRESENT WORTH COST FOR THE ELDER CREEK STORMWATER TREATMENT FACILITY

PARAMETER	COST ¹ (\$)
Design and Construction	3,420,423
Annual Maintenance	20,000
20-year Present Worth Cost ¹	3,692,223

1. Based on a 20-year analysis cycle and an interest rate of 4%

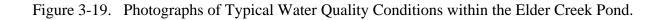
Estimates of pollutant removal costs for total phosphorus and TSS were calculated by dividing the 20-year present worth costs (summarized in Table 3-26) by the estimated total mass load reductions for total phosphorus and TSS over the 20-year analysis period. A summary of this analysis is given in Table 3-27. Estimates of annual mass load reductions for total phosphorus and TSS were obtained from Table 3-24 by subtracting the annual outfall losses from the estimated total annual inputs for these parameters. The estimated annual load reduction for total phosphorus is approximately 311 kg/yr, with a load reduction of 50,751 kg/yr for TSS. The estimated mass removal of total phosphorus and TSS over the 20-year lifecycle analysis are then divided into the 20-year present worth cost to obtain estimates of load reduction costs.

TABLE 3-27

CALCULATED POLLUTANT REMOVAL COSTS FOR THE ELDER CREEK STORMWATER TREATMENT FACILITY

PARAMETER	MASS LOA	D REDUCTION (kg)	PRESENT WORTH COST
	Annual	20-year Cycle	PER kg REMOVED
Total Phosphorus	311	6,220	\$ 594
TSS	50,642	1,015,020	\$ 3.65

A summary of estimated mass removal costs for total phosphorus and TSS is given in the final column of Table 3-27. The estimated phosphorus removal cost for the Elder Creek pond is approximately \$594/kg removed, with a TSS load reduction cost of approximately \$3.65/kg removed. These values are similar to mass removal costs commonly observed in wet detention systems.


3.6 Discussion

The results of the field monitoring program conducted at the Elder Creek stormwater facility site indicate that the pond achieved relatively good removal efficiencies for total phosphorus and TSS but no measurable removal for total nitrogen. As indicated on Table 3-17, concentrations of inorganic nitrogen species measured in the pond inflows were relatively low in value. In addition, the TN/TP ratio for water within the pond, based upon the characteristics of pond outflow samples summarized in Table 3-19, was approximately 4:1, which suggests nitrogen-limiting conditions and favors the growth of cyanobacteria. Evidence of cyanobacteria algal blooms was observed within the pond on multiple occasions. Photographs of typical water quality conditions within the Elder Creek pond are given on Figure 3-19, and cyanobacteria populations are clearly evident in these photographs. Cyanobacteria have the ability to fix atmospheric nitrogen during conditions of low nitrogen availability, such as those present within the Elder Creek pond. Evidence of nitrogen fixation within the pond is apparent in the estimated mass removal efficiencies summarized in Table 3-24 which indicate an increase in total nitrogen within the pond of approximately 9%.

a. Floating filamentous algae

b. Blue-green algal bloom

Extremely elevated levels of phosphorus species were observed in the inflows to the pond, with concentrations several times higher than commonly observed in urban runoff. The observed mass removal efficiency of 44% for total phosphorus in the Elder Creek pond is somewhat lower than phosphorus removals commonly observed in wet detention ponds which typically range from 60-80%. The lack of additional phosphorus removal is likely related to the nitrogen-limited conditions within the pond which limited the growth of phytoplankton which is one of the primary removal mechanisms available in wet detention ponds. In addition, a large percentage of the total phosphorus was present as readily available SRP, and the available nitrogen sources appear to be inadequate to support the level of algal productivity which could potentially occur at these extremely elevated SRP values.

SEMINOLE COUNTY \ ELDER CREEK RSF REPORT

Mass removal efficiencies within the Elder Creek pond appear to have been impacted by an imbalance in input concentrations of total nitrogen and total phosphorus with a relatively low input concentration for total nitrogen and an elevated input concentration for total phosphorus. Nitrogen-limited conditions appear to occur within the pond which create conditions favorable for growth of cyanobacteria and nitrogen fixation.

3.7 **Quality Assurance**

Supplemental samples were collected during the field monitoring program for quality assurance purposes. These supplemental samples include equipment blanks and duplicate samples, along with supplemental laboratory analyses to evaluate precision and accuracy of the collected data. A summary of QA data collected as part of this project is given in Appendix D.

SECTION 4

SUMMARY

A field monitoring program was conducted by ERD from April 2009-March 2010 to evaluate the performance efficiency of the Elder Creek wet detention pond facility. The wet detention pond is designed to provide treatment for a 234-acre drainage basin with a treatment volume equivalent to 1 inch over the contributing basin area. The Elder Creek pond contains both open water and expanded littoral zone areas to provide a combination of treatment alternatives.

Automatic samplers with integral flow meters were installed at three significant inflows as well as the pond outfall to provide a continuous record of hydraulic inputs and losses and to collect runoff and discharge samples in a flow-weighted mode. A recording rain gauge and evaporimeter were also installed at the monitoring site. A water level recorder was installed inside the pond to assist in evaluating changes in water surface elevations.

Continuous inflow and outflow hydrographs were recorded at the Elder Creek pond at 10-minute intervals from April 1, 2009-March 31, 2010. Over this period, runoff inputs into the pond contributed approximately 94% of the hydrologic inputs, with 4% contributed by direct rainfall, and 2% by groundwater inflow. Approximately 95% of the hydrologic inputs exited the pond through the outfall structure, with 4% lost due to evaporation and 1% lost to groundwater. The mean residence time in the pond during the study period was approximately 23 days.

Over the 12-month monitoring program, a total of 110 inflow samples was collected, with 56 pond outfall samples, and 38 bulk precipitation samples. A total of 34 vertical field profiles was also collected near the center of the pond. During the monitoring program, the pond was found to be relatively well mixed, with no evidence of significant thermal stratification. Adequate levels of dissolved oxygen were maintained within the pond with the exception of a few measurements collected near the sediment-water interface during summer and fall conditions.

Inflow into the pond was characterized by low concentrations of total nitrogen, with substantially elevated levels of total phosphorus. Over the 12-month monitoring program, the pond exhibited a net increase of 10% in total nitrogen, with a removal of 43% for total phosphorus and 76% for TSS. The lack of nitrogen removal and the lower than anticipated removal efficiency for total phosphorus are thought to be related to the nitrogen-limited conditions within the pond which favor the growth of nitrogen-fixing cyanobacteria. The unavailability of inorganic nitrogen species is directly related to the lower than anticipated removal efficiency for total phosphorus since algal production is one of the dominant mechanisms for removal of total phosphorus in wet detention ponds.

Estimated pollutant removal costs for the Elder Creek stormwater treatment facility are approximately \$594/kg of total phosphorus removed and \$3.65/kg of TSS removed. These values are typical of pollutant removal costs commonly associated with wet detention ponds.

APPENDICES

APPENDIX A

SELECTED CONSTRUCTION PLANS FOR THE ELDER CREEK STORMWATER FACILITY

THIS CONTRACT PLAN SET INCLUDES:

REGRADING PLANS EROSION CONTROL MEASURES

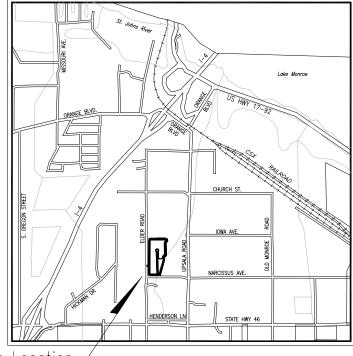
SEMINOLE COUNTY PUBLIC WORKS DEPARTMEN STORMWATER DIVISION

INDEX OF PLANS

SHEE

<u>et no.</u>	SHEET DESCRIPTION
13–14 15–21	COVER SHEET GENERAL NOTES TYPICAL SECTIONS SUMMARY OF QUANTITIES KEY PLAN AND WETLAND AREAS HORIZONTAL CONTROL PLAN AND PROFILE DRAINAGE STRUCTURES POND PLANS POND CROSS SECTIONS DRAINAGE DETAILS EROSION CONTROL PLAN MITIGATION PLANTING AND MONITORING PLAN SOIL BORING PROFILES SPT BORING PROFILES UTILITY ADJUSTMENT SHEETS STORMWATER POLLUTION PREVENTION PLAN (SWPPP)

PUBLIC WORKS DIRECTOR W. Gary Johnson, P.E.

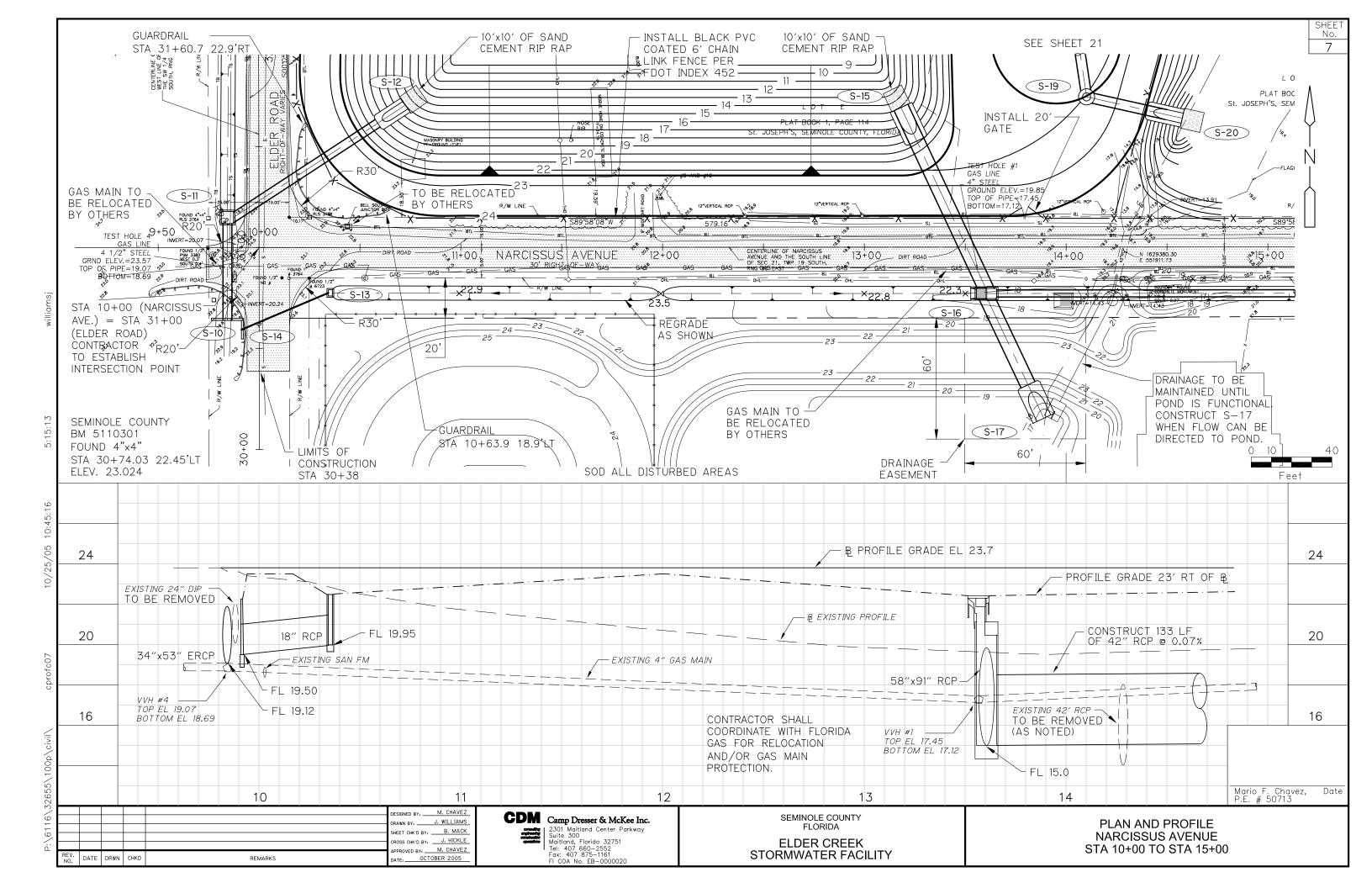

STORMWATER MANAGER Mark Flomerfelt, P.E.

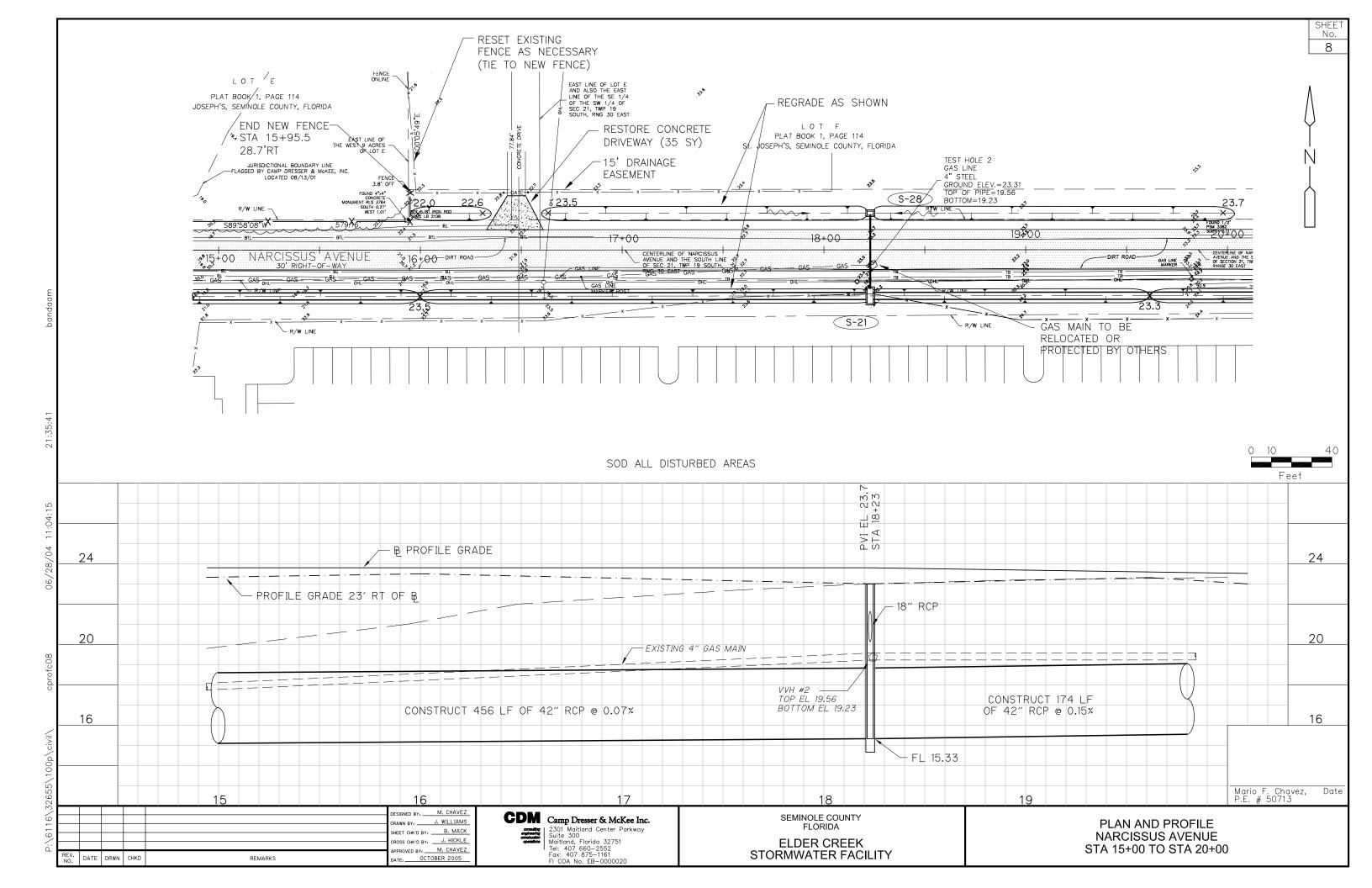
ELDER CREEK STORMWATER FACILITY

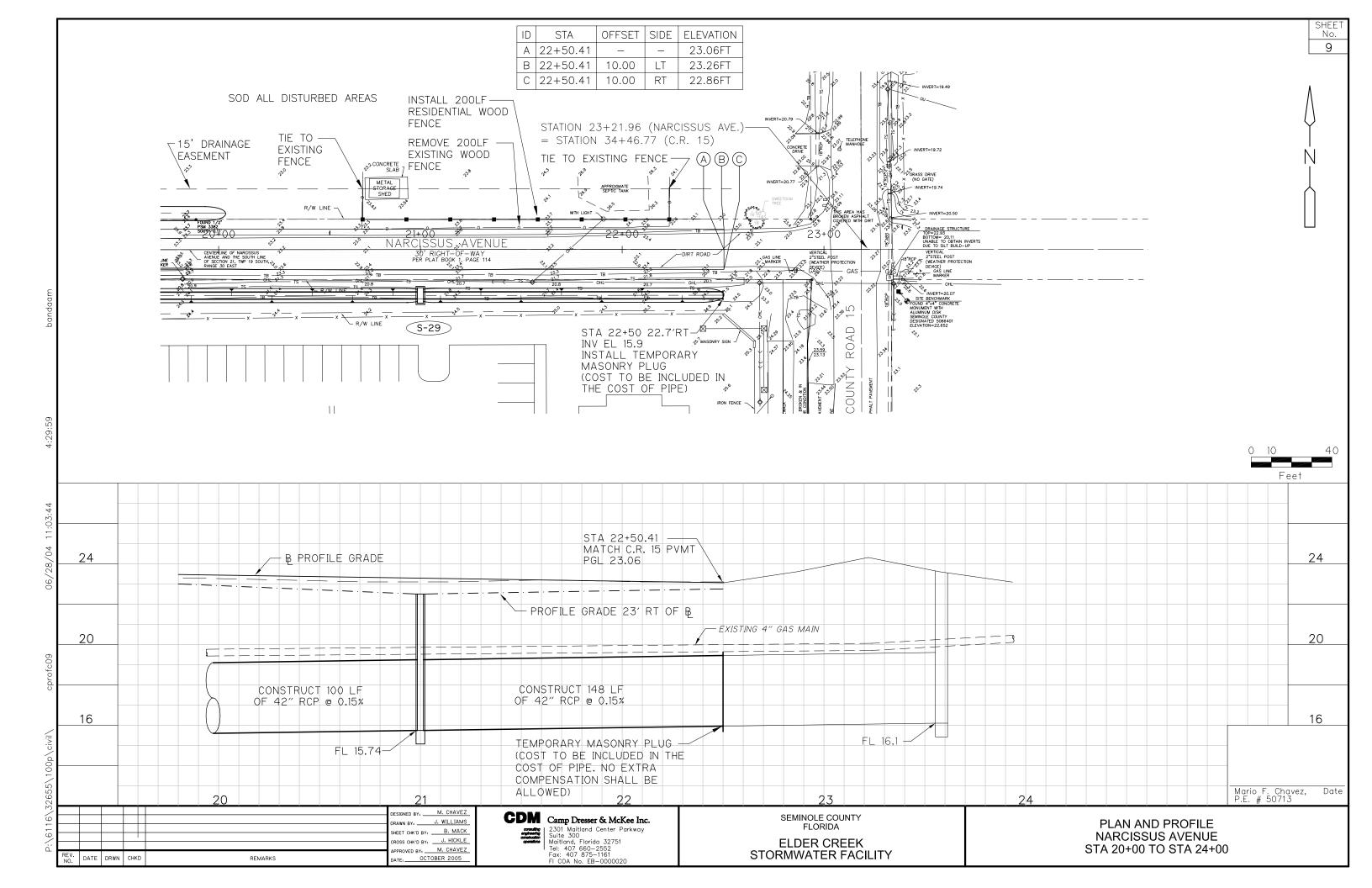
THESE PLANS HAVE BEEN PREPARED IN ACCORDANCE WITH AND ARE GOVERNED BY THE STATE OF FLORIDA DEPARTMENT OF TRANSPORTATION DESIGN STANDARDS (BOOKLET DATED JANUARY 2004)

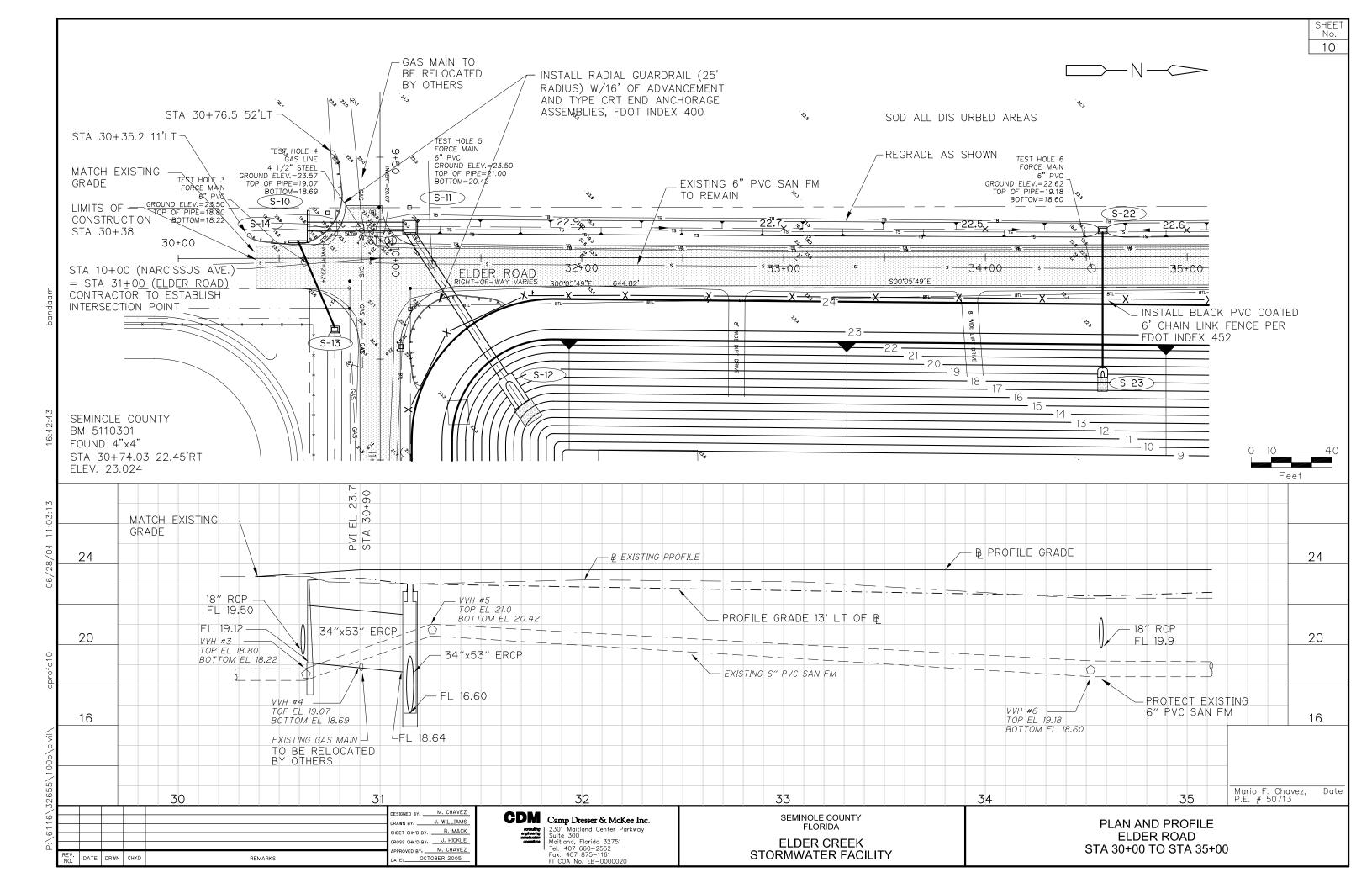
CONSTRUCTION PLANS OCTOBER, 2005

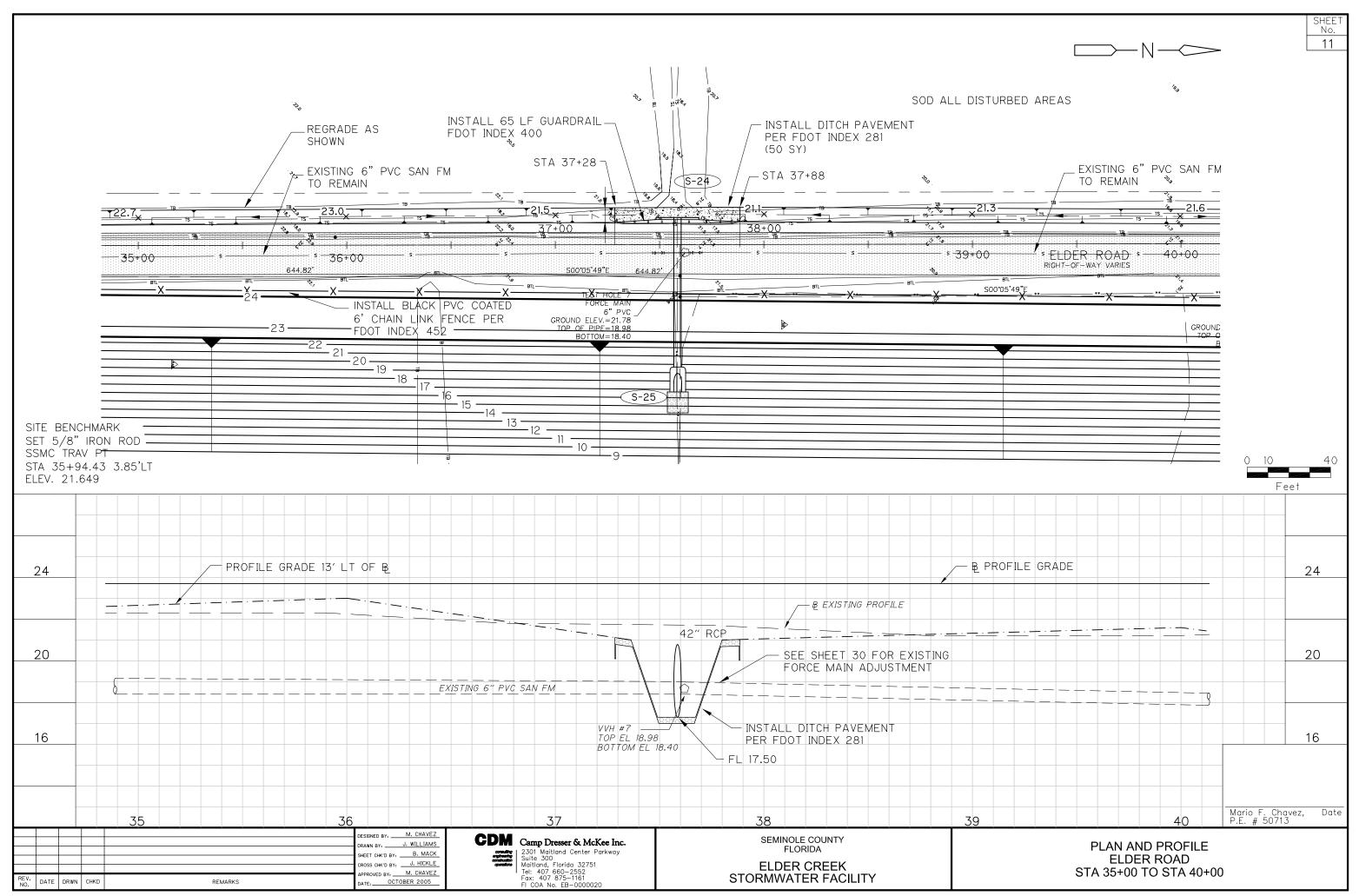
L	ENGTH (OF PRO	JECT			
			SIDE S	TREETS	TOT	TAL
	LIN.FT.	MILES	LIN.FT.	MILES	LIN.FT.	MILES
CH REGRADING	_	_			-	-
					—	
T LENGTH OF PROJECT	_	_			-	-
CEPTIONS	_	_			-	-
OSS LENGTH OF PROJECT	_	_			-	-

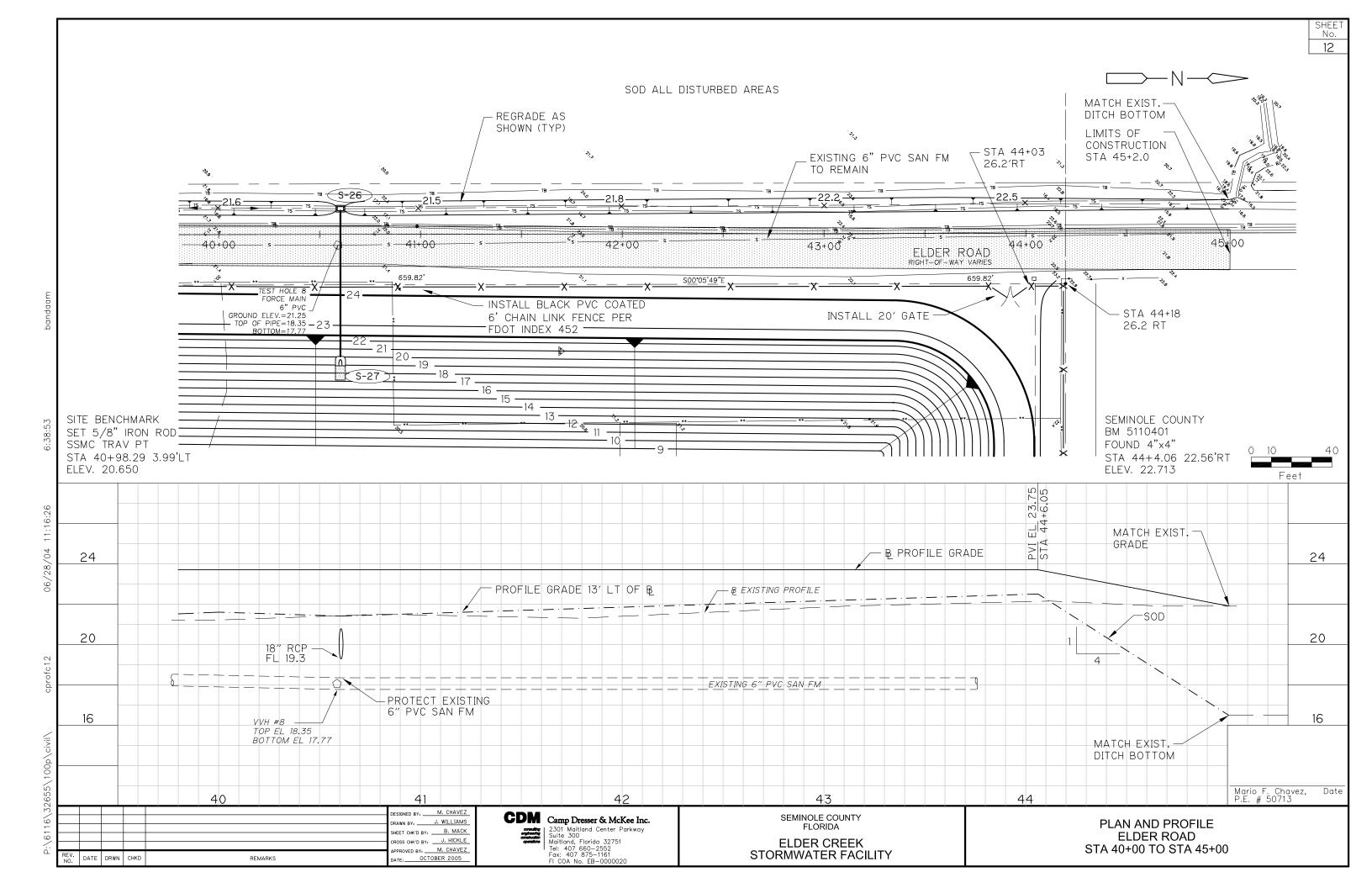

Project Location LOCATION MAP Narcissus Ave. SECTION 21, TOWNSHIP 19 S, RANGE 30 E


DITO

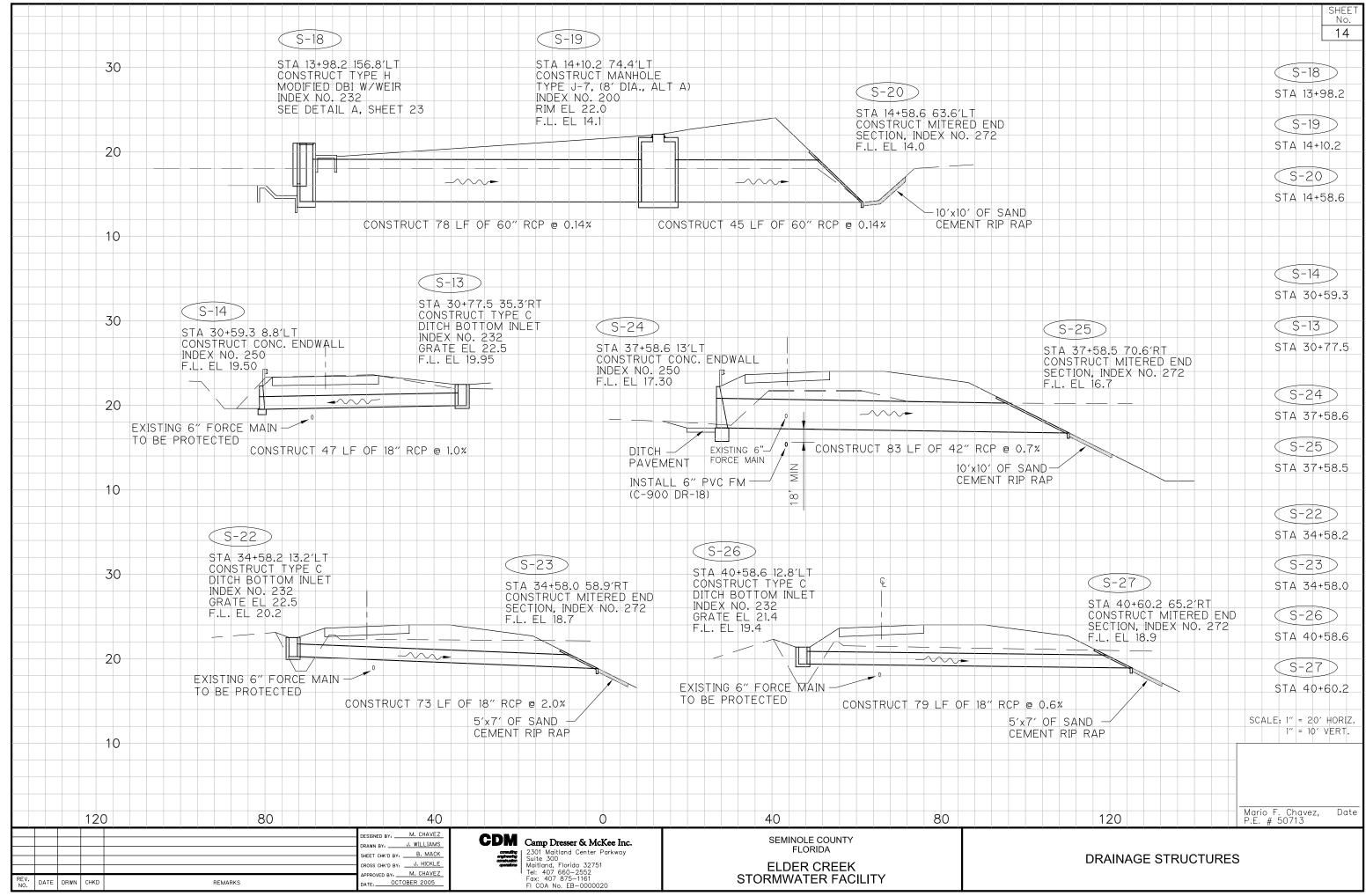

NET EXC


GRC

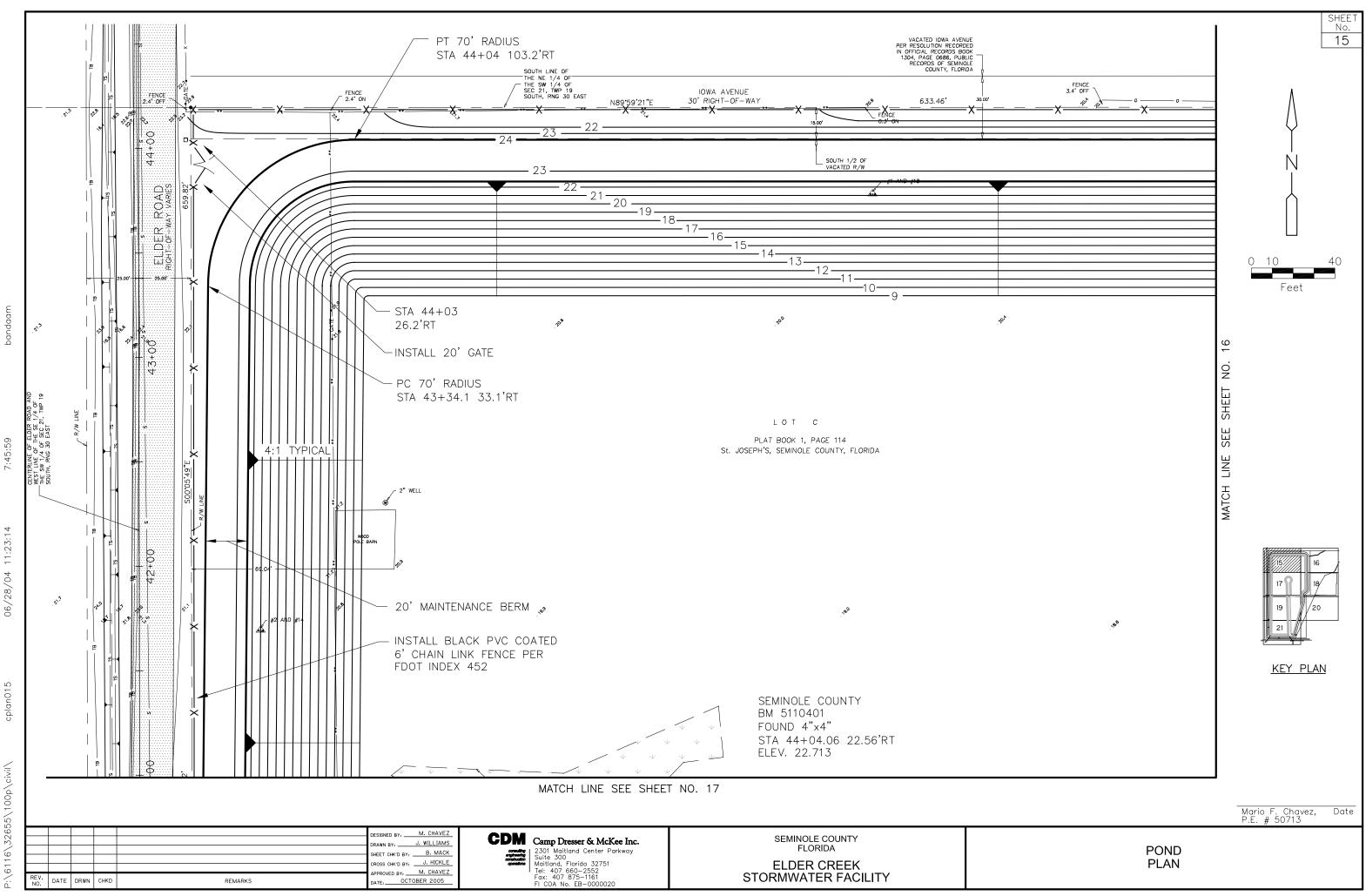

OOD FILE # No. 6116-32655 1 Image: State of FLORIDA, DEPARTMENT OUD FILE #		JOB FILE #	SHEE
OVERNING SPECIFICATIONS: STATE OF FLORIDA, DEPARTMENT of the second o			
GOVERNING SPECIFICATIONS: STATE OF FLORIDA, DEPARTMENT OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY	$\begin{array}{c} 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 $		
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY		ION OF PROJECT	
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
OF TRANSPORTATION, STANDARD SPECIFICATIONS, DATED 2004 AND SUPPLEMENTS THERETO IF NOTED IN THE SPECIAL TECHNICAL PROVISIONS FOR THIS PROJECT. ATTENTION IS DIRECTED TO THE FACT THAT THESE PLANS MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
MAY HAVE BEEN CHANGED IN SIZE BY REPRODUCTION. THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY Mario F. Chavez, P.E. # 50713 DATE CONSTRUCTION COMPLETION DATE FIELD VERIFIED BY	OF TRANSPORTATION, STANDARD SPECIFICATI 2004 AND SUPPLEMENTS THERETO IF NOTED	IONS, DATED	
THIS MUST BE CONSIDERED WHEN OBTAINING SCALED DATA. PREPARED BY: CAMP DRESSER & MCKEE INC. 2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB–0000020 PLANS APPROVED BY			
2301 MAITLAND CENTER PARKWAY, SUITE 300 MAITLAND, FLORIDA 32751 PHONE: (407) 660–2552 FAX: (407) 875–1161 FL COA NO: EB-0000020 PLANS APPROVED BY Mario F. Chavez, P.E. # 50713 DATE CONSTRUCTION COMPLETION DATE FIELD VERIFIED BY REVISIONS			
FL COA NO: EB-0000020 PLANS APPROVED BY Mario F. Chavez, P.E. # 50713 DATE CONSTRUCTION COMPLETION DATE FIELD VERIFIED BY REVISIONS	2301 MAITLAND CENTER PARK MAITLAND, FLORIDA 32751 PHONE: (407) 660-2552		
APPROVED BY Mario F. Chavez, P.E. # 50713 DATE CONSTRUCTION COMPLETION DATE FIELD VERIFIED BY REVISIONS			
APPROVED BY Mario F. Chavez, P.E. # 50713 DATE CONSTRUCTION COMPLETION DATE FIELD VERIFIED BY REVISIONS			
APPROVED BY Mario F. Chavez, P.E. # 50713 DATE CONSTRUCTION COMPLETION DATE FIELD VERIFIED BY REVISIONS	PLANC.		
CONSTRUCTION COMPLETION DATE FIELD VERIFIED BY REVISIONS	APPROVED BY	071.3 DATE	
FIELD VERIFIED BY		5,,,,,	
REVISIONS	CONSTRUCTION COMPLETION DATE		
	FIELD VERIFIED BY		
BY DATE DESCRIPTION	REVISIONS		
	BY DATE DESCRIPTION		

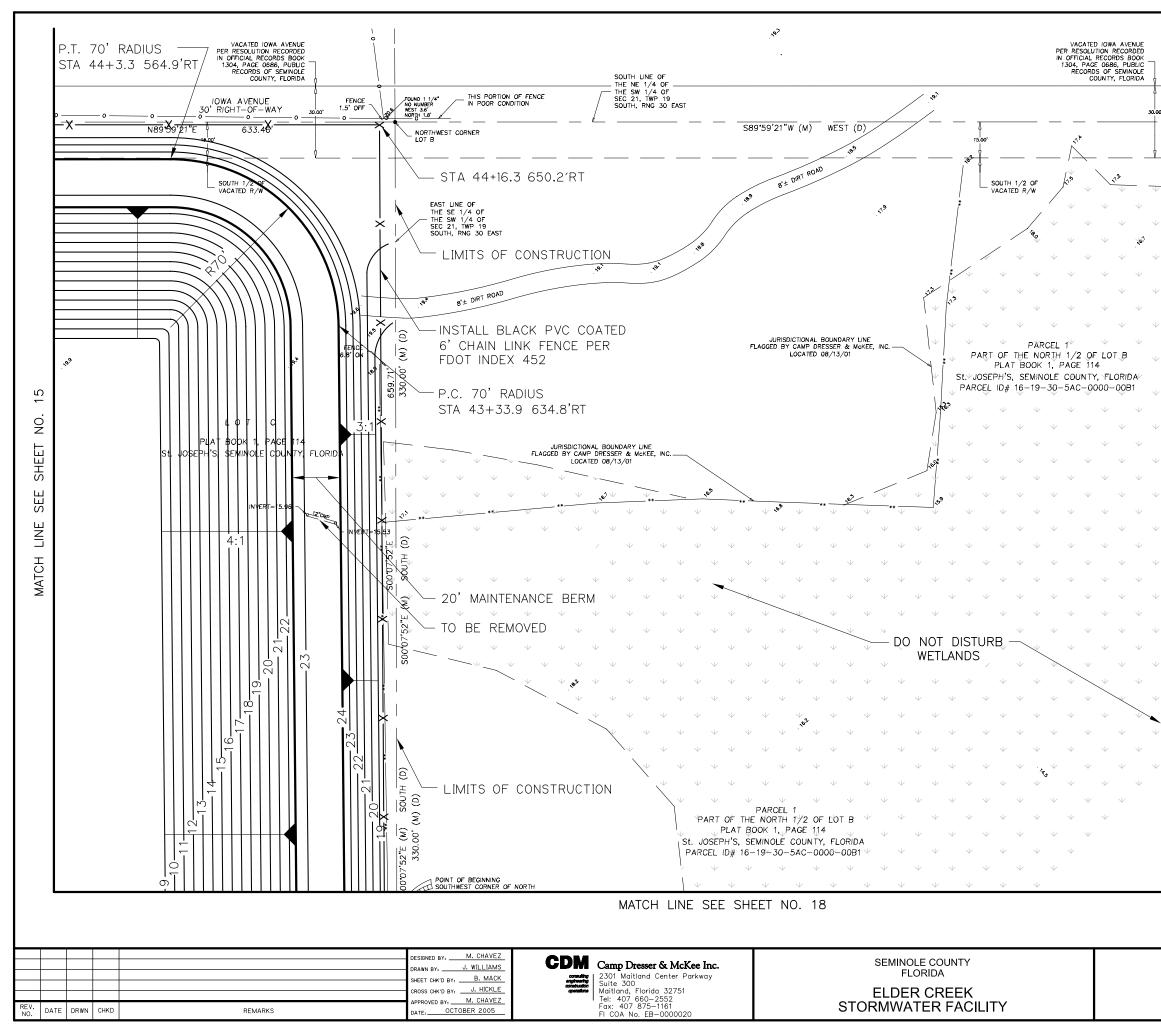


bandaam


9:45:22

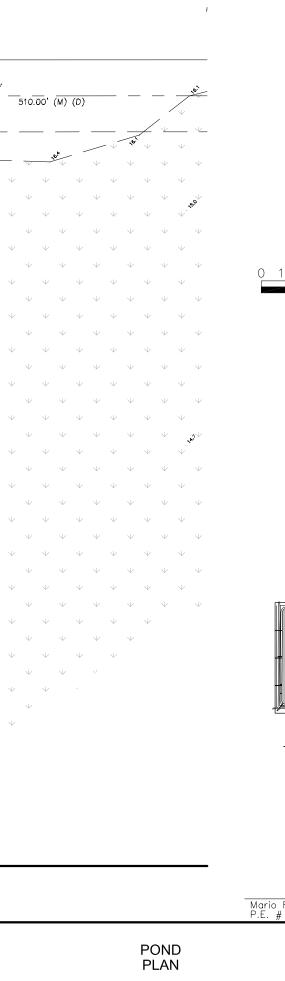
06/28/04 11:01:37


P:\6116\32655\100p\civil\ cprofc11



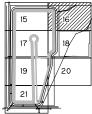
	30	S-10 STA 30+63.9 15.7'LT CONSTRUCT CONC. ENDW	CONSTI W/6' S	11) +14.9_15.6'LT RUCT TYPE G DBI, SQ. BOTTOM (ALT B) EL 23.0	DRAINAGE STRUCTU	JRES EXTEND INTO THE S REME CAUTION WILL BE 1 10SE LOCATIONS.	CT THAT PORTIONS OF SOME TABILIZED PORTION OF THE VECESSARY IN STABILIZATION	SHEET No. 13
	20	INDEX NO. 250 F.L. EL 19.12	F.L. EL	18.64 BK. 16.60 RT.	1 I I I I I I I I I I I I I I I I I I I	MAIN	S-12 TA 31+70.4 72.6'RT ONSTRUCT MITERED END ECTION, INDEX NO. 272 .L. EL 16.0	S-10 STA 30+63.9 S-11
	20 EXISTING 4"							STA 31+14.9
	10 BE RELO		ISTRUCT 48 LF OF x53" ERCP @ 1.0% TO C	\$ \$	CONSTRUCT 102 LF OF 34"x53"	ERCP @ 0.65% 10'x10' 0 CEMENT R		STA 31+68.2
pandaam	30	STA 13+88 CONSTRUCT SECTION, IN F.L. EL 15.	MITERED END IDEX NO. 272	S-16 STA 13+60.6 23.0'RT CONSTRUCT TYPE B DBI INDEX NO. 231 W/10'x5' J-BOTTOM (ALT B) GRATE EL 22.3 F.L. EL 15.00 AH, RT & LT	• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •		S-15 STA 13+18.2 69.2'LT CONSTRUCT MITERED END	S-15 STA 13+90.2
9:55:21	20						SECTION, INDEX NO. 272 F.L. EL 15.00	STA 13+60.6 S-17 STA 13+18.2
6	10		ISTRUCT 66 LF OF 58"x91	" ERCP @ 0.0%	CONSTRUCT 100 LF OF 58"x91" EXISTING 4" GAS MAIN TO BE RELOCATED BY OTHERS	ERCP @ 0.0% 10'x10' OF SAN D CEMENT RIP RAP		S-16 STA 13+60.6 S-21
06/28/04 11:18:51	30	S-29 STA 21+00 22.6'F CONSTRUCT TYPE INDEX NO. 232 GRATE EL 22.5 F.L. EL 15.74 AH		Image: Sector	S-2 STA 18 CONSTR INDEX GRATE F.L. EL	+23 22.9'RT NOCT TYPE H DBI NO. 232 TO S-1 EL 23.0 20.0 LT	S-28 STA 18+23 23.2 CONSTRUCT TYPE INDEX NO. 232 GRATE EL 23.0 F.L. EL 20.42 RT	STA 18+23 C DBI STA 18+23 STA 18+23
cdrnst13	20						EXISTING 4" GAS MA TO BE RELOCATED O PROTECTED BY OTHE	STA 18+23 N R S-29
civil	10		FROM S-117 (BY OTHE	ERS)			CONSTRUCT 41 LF OF 18" RCP @ 1.0%	SCALE: 1" = 20' HORIZ. 1" = 10' VERT.
V000/32655/100p/:4	E DRWN CHKD	REMARKS	DESIGNED BY, M. CHAVEZ DRAWN BY, J. WILLIAMS SHEET CHK'D BY, B. MACK CROSS CHK'D BY, J. HICKLE APPROVED BY, M. CHAVEZ DATE, OCTOBER 2005	Camp Dresser & McKee Inc. 2301 Maitland Center Parkway Suite 300 Maitland, Florida 32751 Tel: 407 660–2552 Fax: 407 875–1161 Fl COA No. EB–0000020	40 SEMINOLE COUNTY FLORIDA ELDER CREEK STORMWATER FACILIT	FY 80	120 DRAINAGE STRUCTU	Mario F. Chavez, Date P.E. # 50713

4

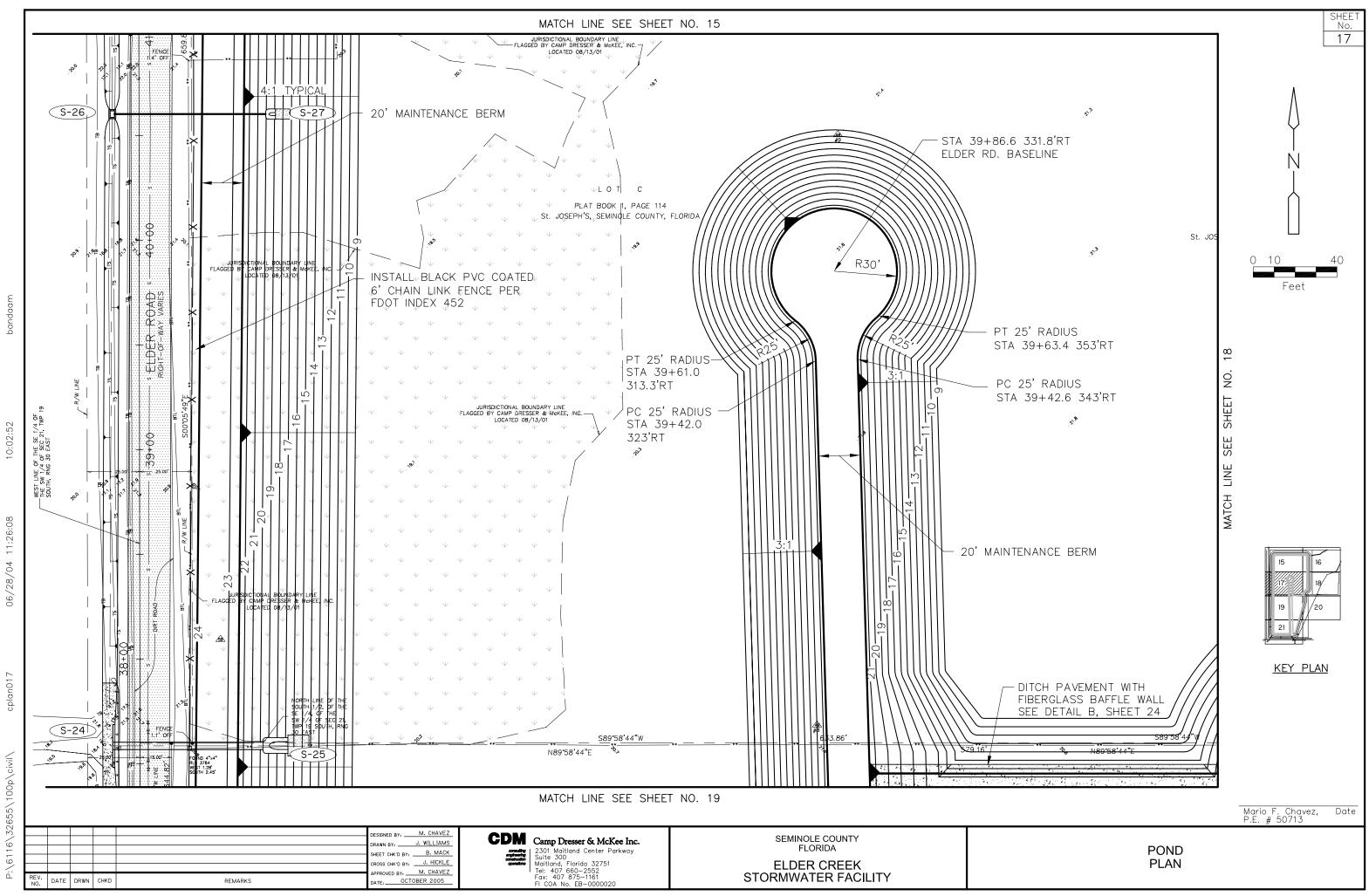


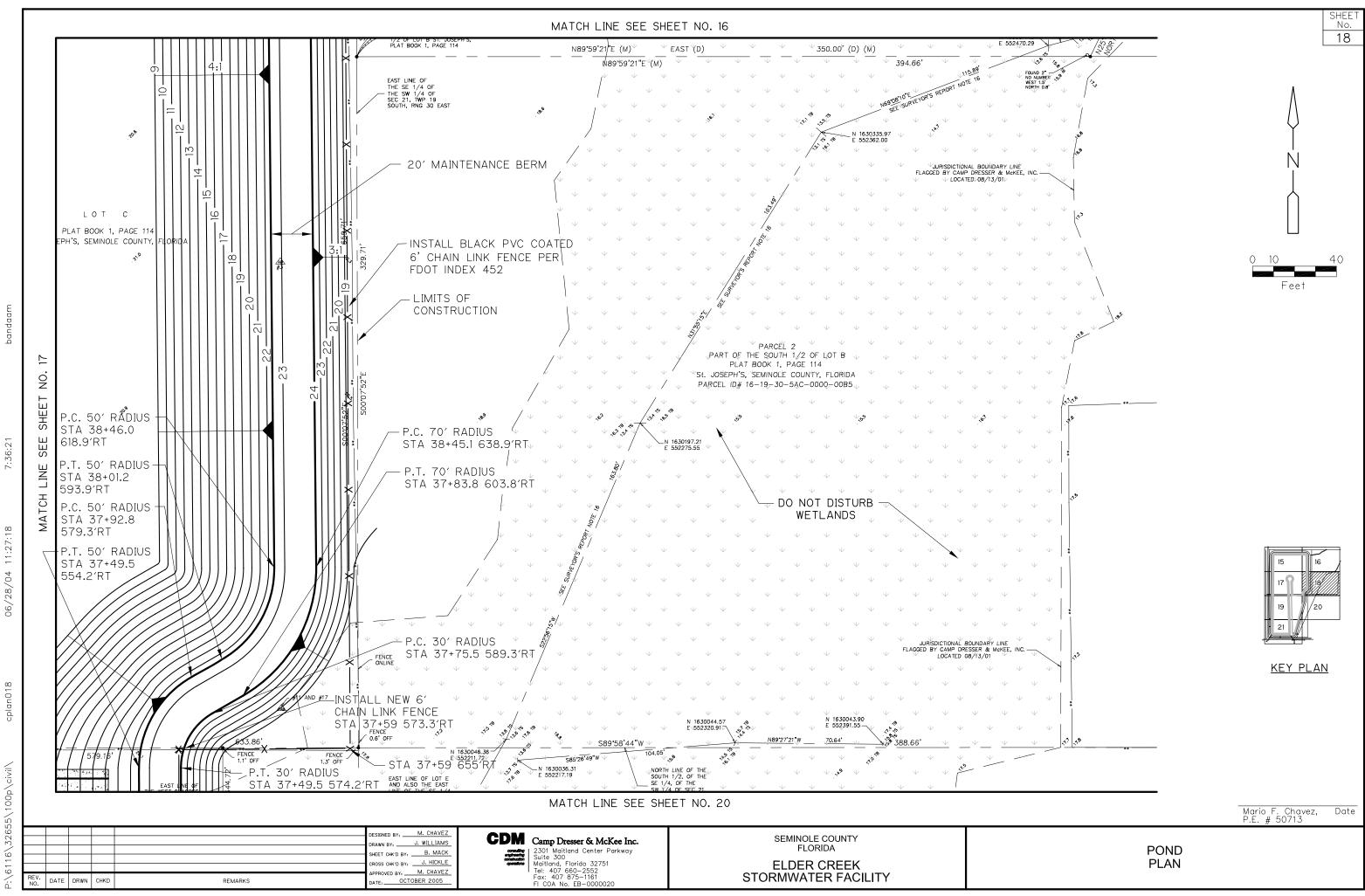
11:24:35 16:47:06

06/28/04

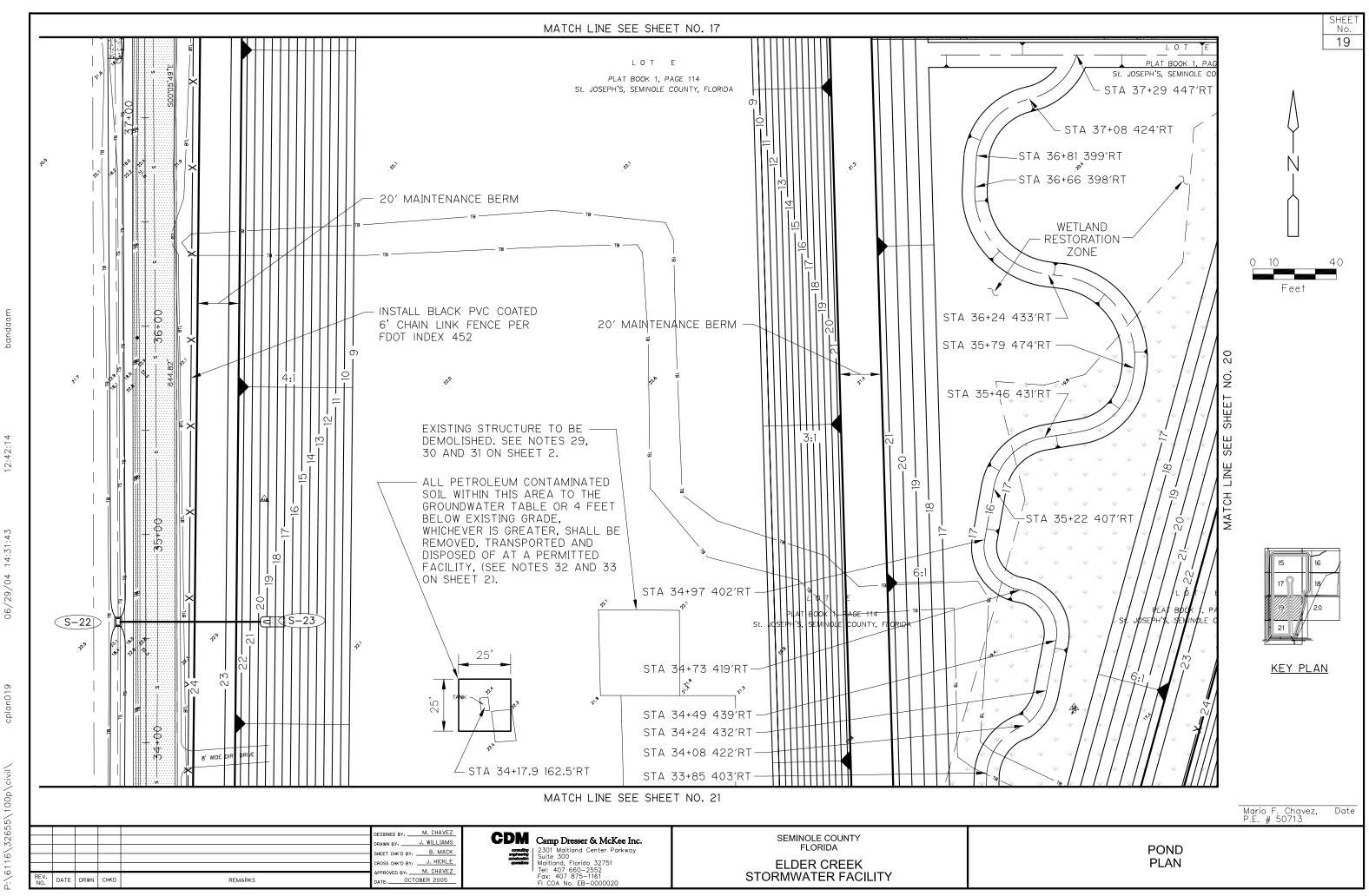

ba

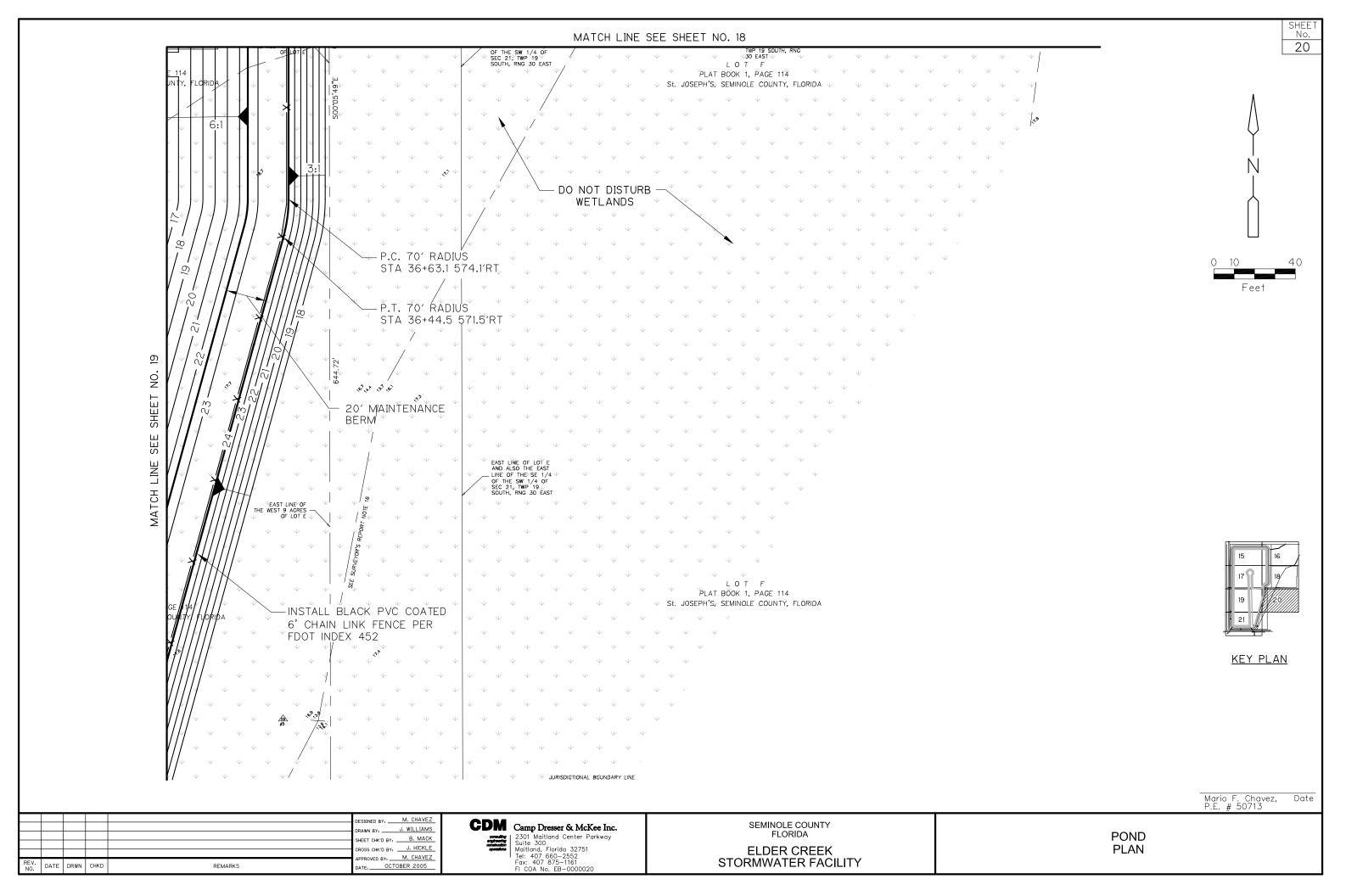
P:\6116\32655\100p\civil\ cplan016


16 N N Feet


SHEET No.

KEY PLAN

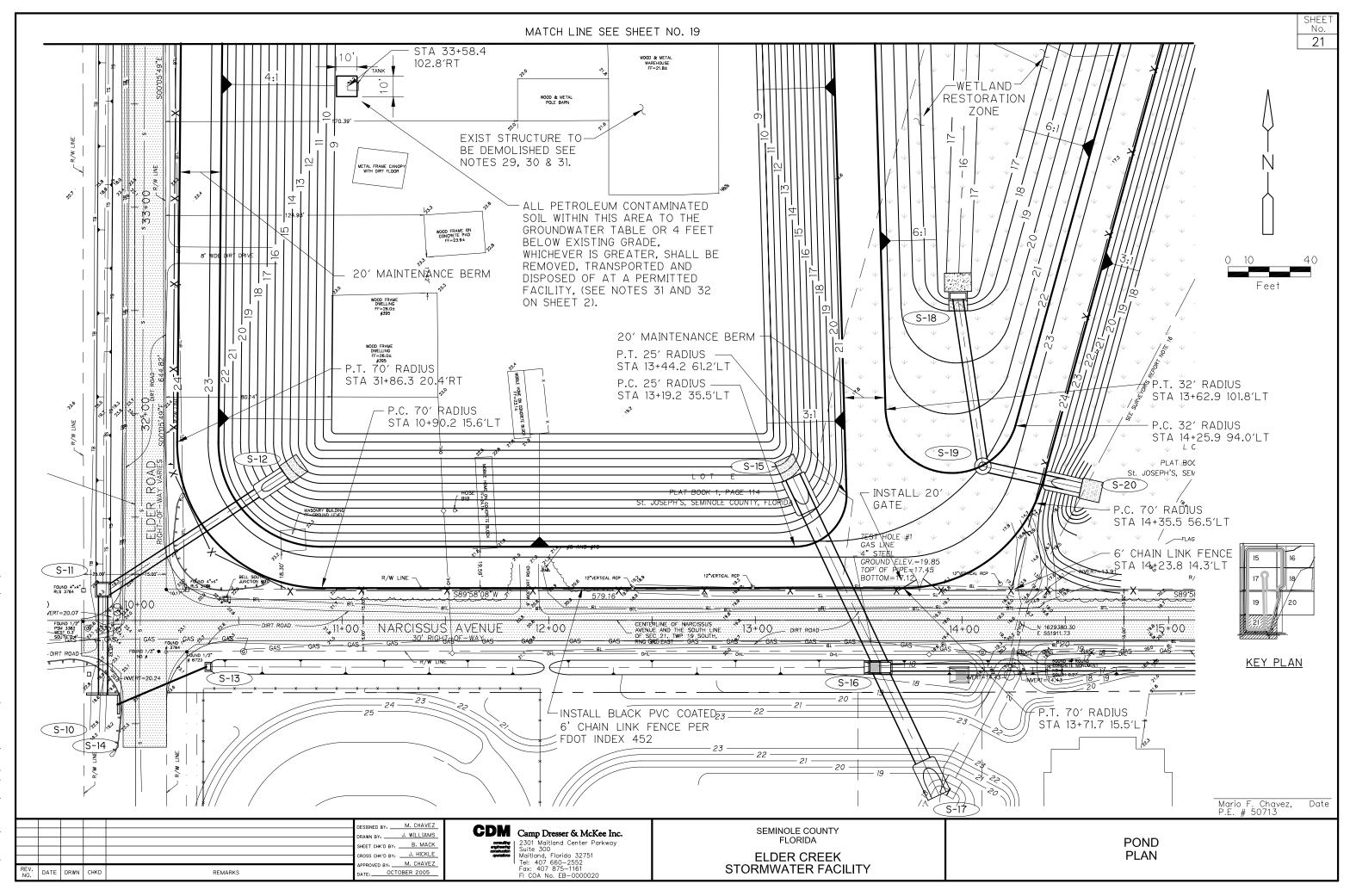

Mario F. Chavez, P.E. # 50713 Date


7:36:21

11:27:18 06/28/04

n019

43

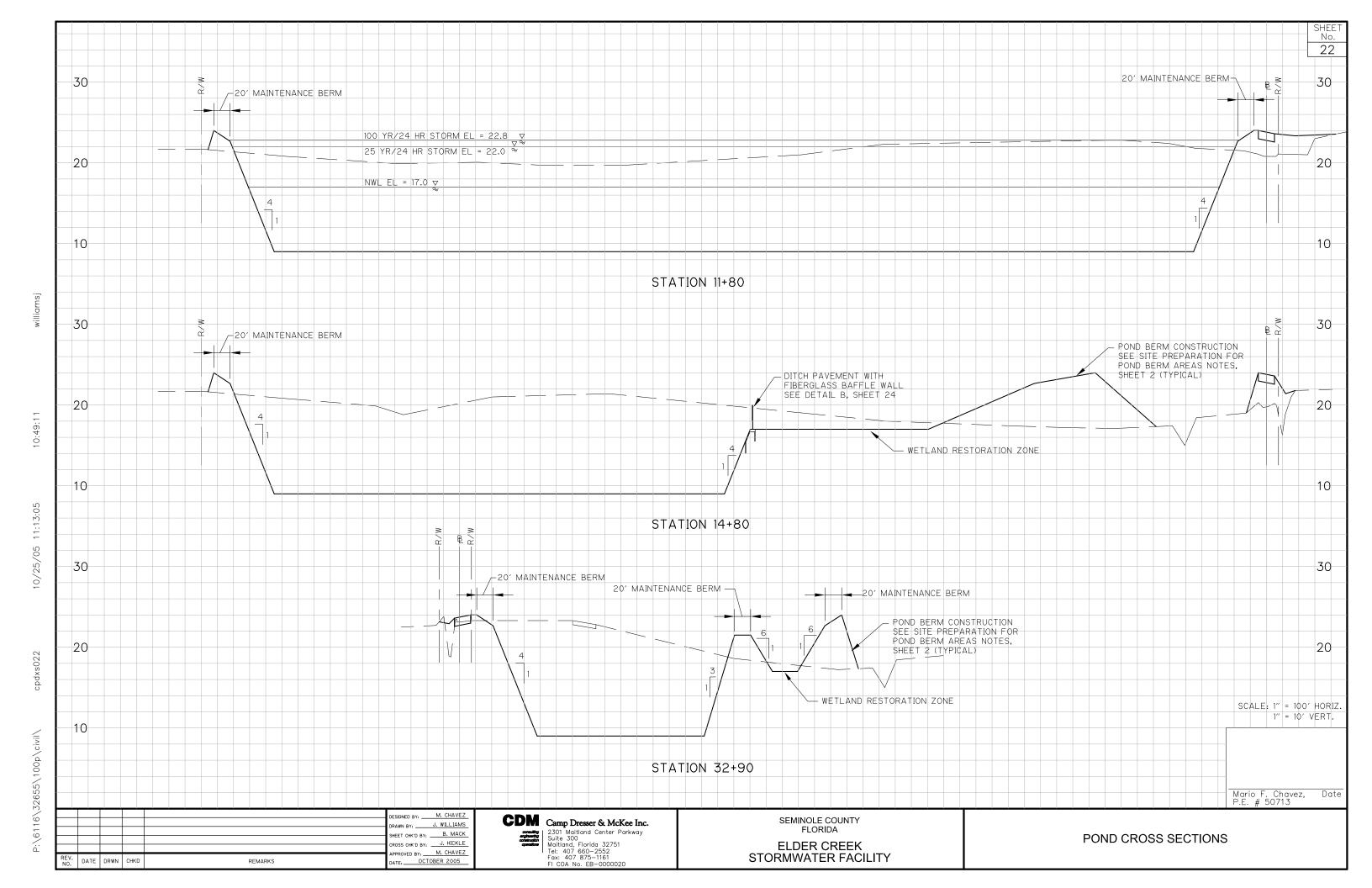

panc

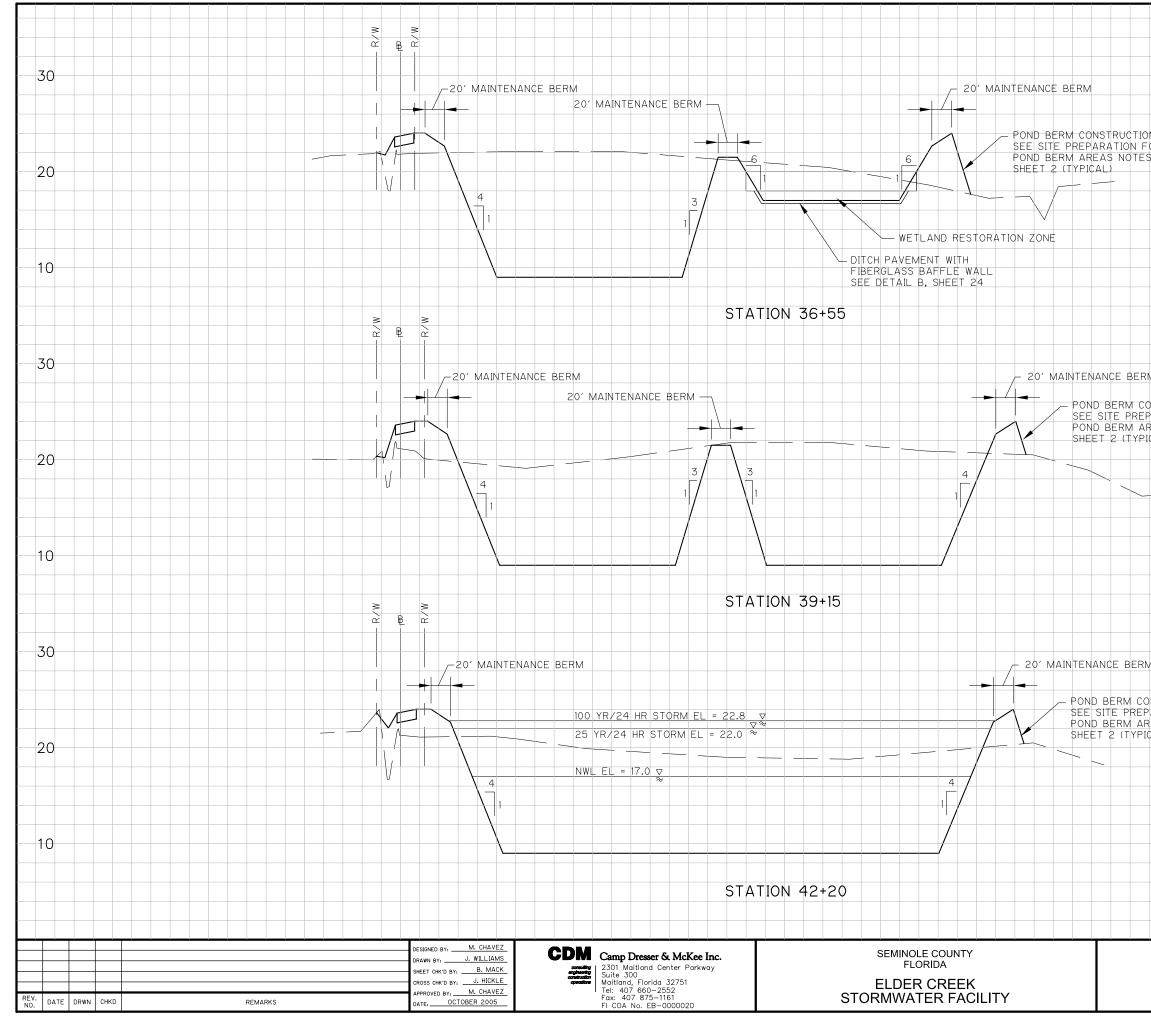
6:56:18

06/28/04 12:52:07

P:\6116\32655\100p\civil\

cplan020



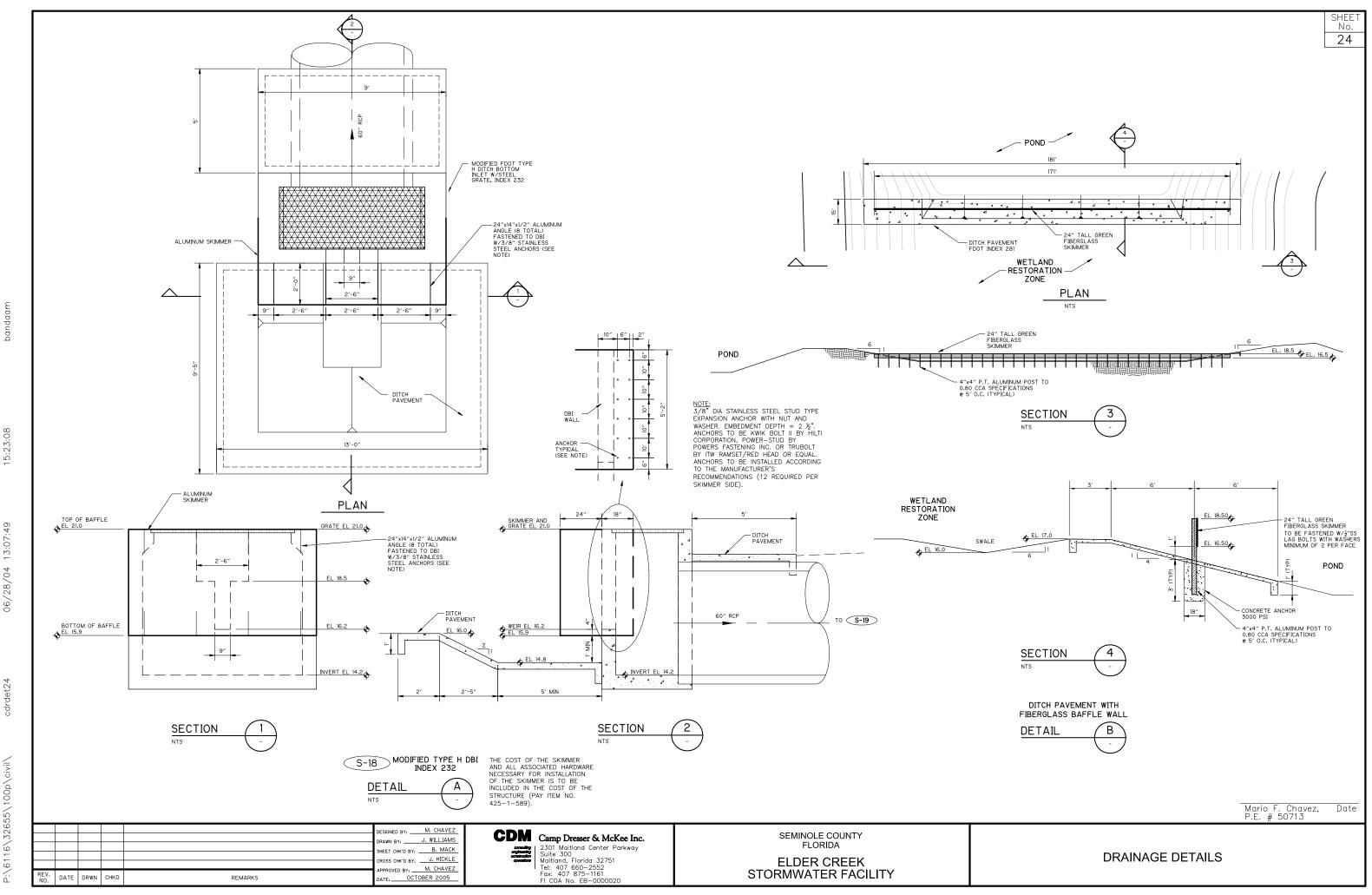

pand

12:41:31

06/28/04 12:58:14

P:\6116\32655\100p\civil\ cplan02

cpdxs023


10/25/05 11:14:11

5:20:35

villiamsj

				SHEFT
				SHEET No. 23
				-30
DN N				
DN FOR IS,				
				20
				10
				30
M				
ONSTRUCTION PARATION FOR REAS NOTES,				
REAS NOTES, PICAL)				
				20
				10
				7.0
M				30
ONSTRUCTION				
PARATION FOR				
REAS NOTES, ICAL)				20
				20
			SCALE: 1" = 100	HORIZ.
			1'' = 10'	VERI.
		<u> </u>	Mario F. Chavez, P.E. # 50713	Date
			~.∟. # 5U/13	
		TIONS		

POND CROSS SECTIONS

15:23:08

APPENDIX B

LABORATORY ANALYSES ON INFLOW AND OUTFLOW SAMPLES

- 1. Inflow Samples
- 2. Outflow Samples
- 3. Bulk Precipitation

B-1. Inflow Samples

Elder Creek Regional Stormwater Treatment Facility	ical Characteristics of Site 1 Inflow Collected from April 2009 - March 2010
	Chemical Cl

Sample	Sample	Date Collected	Ηd	Conductivity	Alkalinity	NH3	XON	Diss. Org. N	Part N	Total N	SRP	Diss. Org. P	Part. P	Total P	Turbidity
Location	Type		(s.u.)	(mho/cm)	(I/gm)	(I/6rl)	(I/6rl)	(I/6rl)	(I/6rl)	(I/6rl)	(I/Brl)	(I/6rl)	(I/Brl)	(I/6rl)	(NTU)
Site #1	Inflow	3/31/09	8.05	308	125	20	ო	168	275	516	146	9	47	199	2.6
Site #1	Inflow	04/02/09-04/07/09	7.46	345	139	194	175	291	362	1022	216	78	128	422	2.5
Site #1	Inflow	4/14/09	7.70	339	150	123	289	251	636	1299	333	76	239	648	49.5
Site #1	Inflow	4/22/09	7.59	384	156	67	34	749	935	1785	229	18	392	639	7.9
Site #1	Inflow	04/20/09-04/30/09	7.42	328	142	198	75	468	819	1560	136	18	183	337	15.0
Site #1	Inflow	04/30/09-05/07/09	7.82	367	151	82	223	405	288	908	200	ი	84	293	7.3
Site #1	Inflow	05/08/09 - 05/14/09	7.80	350	147	120	76	603	248	1047	234	47	140	421	5.3
Site #1	Inflow	5/13/09	7.45	331	158	132	262	722	1813	2929	238	14	1618	1870	201
Site #1	Inflow	5/14/09	8.05	332	143	59	180	585	243	1067	357	28	135	520	2.8
Site #1	Inflow	05/15/09 - 05/17/09	7.89	297	119	159	72	599	402	1232	244	36	141	421	8.4
Site #1	Inflow	5/18/09	7.47	252	95	88	140	242	609	1079	277	7	471	755	33.1
Site #1	Inflow	5/20/09	7.38	204	65	259	46	649	254	1208	242	10	51	303	4.2
Site #1	Inflow	5/26/09	7.12	225	75	60	39	807	375	1281	514	48	121	683	5.6
Site #1	Inflow	60/6/9	7.30	337	122	155	82	612	126	975	404	20	113	537	4.3
Site #1	Inflow	6/1 7/09	7.26	289	113	81	300	141	165	687	49	241	56	346	5.4
Site #1	Inflow	7/12/09	7.30	192	78	ო	36	303	925	1267	170	ო	946	1119	175
Site #1	Inflow	7/13/09	7.73	232	100	ო	21	304	342	670	203	70	80	353	10.9
Site #1	Inflow	7/18/09	7.98	378	174	23	42	282	462	809	154	7	149	310	3.2
Site #1	Inflow	7/28/09	7.58	272	110	22	523	537	437	1519	199	9	1411	1616	76.7
Site #1	Inflow	7/29/09	7.62	186	70	37	ო	719	333	1092	249	7	439	695	354
Site #1	Inflow	7/30/09	7.58	234	125	51	267	623	203	1144	216	ø	210	434	15.1
Site #1	Inflow	8/3/09	7.42	202	82	31	413	243	517	1204	240	4	611	855	32.4
Site #1	Inflow	8/6/09	8.20	326	130	43	370	374	171	958	262	-	150	413	4.1
Site #1	Inflow	8/20/09	7.61	223	95	186	208	256	362	1012	263	2	59	324	10.3
Site #1	Inflow	8/20/09	7.37	184	74	223	ო	162	450	838	302	6	87	398	7.5
Site #1	Inflow	8/22/09	7.28	240	101	42	15	493	274	824	304	23	60	387	6.2
Site #1	Inflow	08/28/09-09/04/09	7.23	187	71	164	115	351	287	917	293	10	233	536	7.6
Site #1	Inflow	09/04/09-09/09/09	7.21	357	142	19	ო	706	788	1516	154	8	386	548	7.1
Site #1	Inflow	09/09/09-09/18/09	7.63	335	140	48	ო	398	811	1260	150	21	145	316	3.0
Site #1	Inflow	11/17/09-11/30/09	7.26	417	187	43	ო	862	1483	2391	216	23	513	752	27.1
Site #1	Inflow	12/03/09-12/07/09	6.86	252	97	93	4	112	413	622	231	22	403	656	15.5
Site #1	Inflow	12/16/09-12/22/09	7.40	388	161	43	121	309	301	774	181	29	268	478	8.8
Site #1	Inflow	12/25/09-12/29/09	7.73	369	179	46	121	577	284	1028	312	9	206	524	14.5
Site #1	Inflow	12/29/09 - 01/05/10	7.08	264	112	166	ო	171	696	1036	263	41	459	763	27.4
Site #1	Inflow	01/05/10-01/19/10	7.80	410	173	9	330	502	183	1021	207	19	18	244	8.7
Site #1	Inflow	01/21/10-01/22/10	7.40	312	143	113 ĩĩ	271	350	372	1106	538	72 2	64	674	12.8
Site #1		01/22/10-01/28/10	[398	148	55 F	284	272	380	909	247	، ري	449	699	15.0
Olte #1		01/20/10-02/02/10	7 27	014	101	40 90	200	1002	001	000	147	- 0	202	4/2	
Site #1	Inflow	2/12/10	7 41	280	115	99	316	507	65	1021	185	28	254	467	17.0
Site #1	Inflow	02/16/10-03/10/10	7 59	434	169	280	674	106	195	1255	278	- 12 - 12	262	555	27.1
Site #1	Inflow	03/10/10-03/18/10	7.05	179	62	171	243	236	348	1004	192	22	366	580	35.1
Site #1	Inflow	3/21/10	7.24	265	106	54	196	369	734	1353	225	21	488	734	18.1
Site #1	Inflow	03/25/10-03/26/10	7.33	412	163	189	65	943	518	1715	62	166	451	679	7.3
Site #1	Inflow	03/28/10-0/29/10	7.13	234	91	54	16	419	125	614	201	25	107	333	6.9
	ž	Mean Value:	7.50	303	125	95	157	448	453	1153	237	32	307	576	22.4
	Min	Minimum Value:	6.86	179	61.6	e	e	106	65	516	49	-	18	199	2.5
	Мах	Maximum Value:	8.20	434	187	280	674	1002	1813	2929	538	241	1618	1870	201

Elder Creek Regional Stormwater Treatment Facility Chemical Characteristics of Site 2 Inflow Collected from April 2009 - March 2010
--

Taunpie Date Collected		CONTRACTIVITY	AIKalinity			N GIDS CIG. N			5	- 50	5	-	
	-	(mho/cm)	(I/gm)	(l/6rl)	(l/Brl)	(I/Brl)	(I/6rl)	(I/6rl)	(I/6rl)	(I/Grl)	(I/6rl)	(l/6rl)	(NTU)
		536	214	56	70	480	196	802	498	25	129	652	4.7
		515	214	97	101	412	124	734	459	4	107	570	4.2
		517	210	77	79	464	69	689	381	34	62	477	2.1
		498	240	68	19	354	119	560	372	31	48	451	3.2
		487	189	56	25	750	310	1141	343	55	67	465	4.2
		444	173	8	14	694	229	945	298	80	32	338	6.4
		207	20	13	14	528	129	684	251	ო	27	281	7.2
		201	64	ю	71	547	66	720	291	4	39	334	5.5
Inflow 5/26/09		373	125	62	231	627	364	1284	369	7	204	580	5.7
		408	160	92	36	526	156	810	379	ø	164	551	4.2
		430	175	53	346	273	219	891	107	254	222	583	6.8
		247	104	26	10	601	14	651	39	. 	122	162	17.6
		403	158	127	325	325	340	1117	492	27	380	899	13.5
		241	94	ი	4	493	402	902	579	94	255	928	7.3
		270	96	124	8	556	111	799	325	17	74	416	3.0
		197	74	77	118	287	67	549	211	ო	57	271	2.3
		273	120	97	210	421	67	795	345	-	111	457	1.7
		168	71	75	ო	251	383	712	349	8	119	476	6.3
		389	171	157	45	441	545	1188	490	17	296	803	6.2
		210	151	126	ო	268	221	618	122	48	206	376	12.1
		516	183	267	87	520	164	1038	64	9	213	283	17.5
		292	117	53	25	614	248	940	632	4	170	806	8.2
		465	185	125	87	386	353	951	103	6	346	458	10.9
		458	189	329	232	386	280	1227	27	14	315	356	16.8
		571	211	204	119	434	180	937	30	10	367	407	25.2
		224	85	56	68	329	360	813	233	17	190	440	13.1
		395	158	94	16	631	132	873	251	69	246	566	8.8
Inflow 03/28/10-(0/29/10 7.31	256	107	40	ი	580	77	200	295	e	151	449	8.7
Mean Value:	7.54	364	147	92	85	471	213	860	298	28	169	494	8.3
Minimum Value:	e: 7.08	168	64.2	ы	ę	251	14	549	27	-	27	162	1.7
Mavimum Value	-	Ì											

Sample	Sample	Date Collected	Hq	Conductivity	Alkalinity	NH3	XON	Diss. Org. N	Part N	Total N	SRP	Diss. Org. P	Part. P	Total P	Turbidity
Location	Type		(s.u.)	(mho/cm)	(I/gm)	(I/GrI)	(I/Brl)	(l/6rl)	(l/6rl)	(I/Brl)	(I/6rl)	(I/GrI)	(I/6rl)	(I/Brl)	(NTU)
Site #3	Inflow	5/18/09	7.10	695	67.2	24	ი	560	112	669	10	7	58	75	8.6
Site #3	Inflow	5/18/09	7.12	164	44.0	21	5	513	45	584	69	-	17	87	2.8
Site #3	Inflow	05/18/09 - 05/19/09	7.11	127	43.4	36	4	507	149	696	80	ო	13	96	2.6
Site #3	Inflow	5/19/09	6.87	132	29.4	44	21	445	53	563	97	6	6	115	2.4
Site #3	Inflow	5/26/09	7.27	208	71.0	21	5	647	384	1057	268	13	59	340	2.4
Site #3	Inflow	60/6/9	7.36	359	143	ო	ო	828	255	1088	74	7	32	113	2.0
Site #3	Inflow	6/11/09	7.31	388	169	ი	22	645	330	1000	4	22	15	41	2.2
Site #3	Inflow	6/18/09	7.76	261	111	19	12	764	271	1066	40	7	60	107	8.3
Site #3	Inflow	6/30/08	7.37	520	172	22	5	651	22	700	19	с	7	29	2.9
Site #3	Inflow	6/30/08	7.65	244	81.8	14	4	345	142	505	20	5	2	27	5.3
Site #3	Inflow	7/14/09	7.37	369	164	ю	ო	579	28	612	19	1	9	36	4.5
Site #3	Inflow	7/28/09	7.10	144	41.2	38	32	367	224	661	79	1	67	157	12.9
Site #3	Inflow	7/29/09	7.13	143	34.8	34	44	363	242	683	58	16	40	114	3.9
Site #3	Inflow	8/3/09	7.23	91	32.0	89	70	235	104	498	72	-	34	107	4.9
Site #3	Inflow	8/20/09	7.65	210	85.4	140	ო	322	401	866	237	2	49	288	1.7
Site #3	Inflow	8/20/09	7.51	314	72.0	182	ო	439	86	710	24	4	ი	37	2.3
Site #3	Inflow	08/28/09-09/04/09	7.43	385	165	75	ი	462	60	600	12	2	6	23	1.2
Site #3	Inflow	9/28/09	7.23	447	205	26	ი	903	87	1019	32	13	30	75	2.7
Site #3	Inflow	12/4/09	6.76	165	40.6	42	4	179	91	316	25	20	26	71	2.3
Site #3	Inflow	12/5/09	6.87	128	36.6	27	41	182	113	363	54	14	20	88	2.3
Site #3	Inflow	12/29/09	7.48	424	188	74	21	242	77	414	4	~	7	12	2.9
Site #3	Inflow	1/1/10	7.52	391	152	37	ი	394	20	454	10	ю	4	17	6.5
Site #3	Inflow	1/19/10	7.68	462	163	37	ი	500	94	634	7	7	15	24	1.9
Site #3	Inflow	1/22/10	7.49	298	123	158	134	410	208	910	45	12	16	73	6.9
Site #3	Inflow	01/22/10-01/28/10	7.49	317	97.4	39	12	444	53	548	52	6	6	70	0.9
Site #3	Inflow	2/3/10	7.45	492	171	27	6	472	21	529	б	ო	6	21	0.6
Site #3	Inflow	2/5/10	7.16	203	58.6	34	ი	512	137	686	38	17	40	95	13.3
Site #3	Inflow	2/9/10	7.39	285	81.2	47	ი	516	144	710	14	14	19	47	4.8
Site #3	Inflow	2/10/10	7.40	353	103	44	ი	595	156	798	5	1	41	57	8.4
Site #3	Inflow	2/12/10	7.13	214	62.8	36	56	468	174	734	58	1	33	102	5.6
Site #3	Inflow	2/13/10	7.55	327	97.2	36	12	560	28	636	20	7	10	37	2.0
Site #3	Inflow	3/10/10	7.52	651	232	49	16	480	513	1058	10	5	70	85	21.2
Site #3	Inflow	3/12/10	6.86	227	74.2	26	11	459	120	616	30	30	55	115	3.5
Site #3	Inflow	3/18/10	7.51	576	212	25	9	466	211	708	8	22	66	96	10.5
Site #3	Inflow	3/21/10	7.27	234	79.6	23	13	471	309	816	19	6	75	103	56.6
Site #3	Inflow	3/26/10	7.24	301	104	33	20	531	239	823	4	36	43	83	15.1
Site #3	Inflow	03/28/10-0/29/10	7.20	232	87.2	21	с	355	100	479	5	39	38	82	16.1
	Σ	Mean Value:	7.31	310	105	43	17	481	157	698	44	5	30	85	6.9
	Min	Minimum Value:	6.76	91	29.4	ę	ę	179	20	316	4	-	7	12	0.6
	Max	Maximum Value:	7.76	695	232	182	134	903	513	1088	268	39	- 75	340	56.6

B-2. <u>Outflow Samples</u>

Otal P Turbidity (190/1) (115) 137 6.9 332 137 137 6.9 332 15.6 207 7.3 191 11.5 207 3.4 207 3.4 214 11.5 207 3.4 133 15.5 133 15.5 133 12.0 397 6.0 397 7.1 397 7.1 397 7.1 397 7.1 398 7.3 394 4.4 474 6.8 57 338 311 7.7 313 7.3 314 5.7 336 5.7 3370 6.5 500 5.1 3335 5.1 444 5.2 335 5.7		293 7.4 57 1.0 519 30.1
Part. P 55 55 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 57 56 58 57 56 58 57 56 58 57 56 58 57 56 58 57 56 58 57 56 58 57 56 57 57 56 57 56 57 56 57 56 57 56 57 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57	79 169 76 476	94 3 312
Diss. O (1991) 1001 1001 1001 1001 1001 1001 1001	14 9 27 26 27	22 1 247
<pre>SRP (1951) 745 745 746 746 747 747 747 755 747 755 747 755 757 755 757 755 757 755 755</pre>	43 110 70 69 61	177 5 355
Total N (1281) (1281) 1771 1407 11771 1407 11561 11409 11572 11284 11284 11284 11284 11284 11284 11284 11284 11284 11284 11285 11288 11288 11288 11285 11288 11285 11288 11285 11288 112855 112855 1128555 11285555 11285555555555	1002 1061 757 828 607	1140 455 2523
Part N (Jugl) (Jugl) (Jugl) 249 249 254 251 253 253 253 253 253 253 253 253 253 253	502 620 411 336 338 388 388	489 31 1408
Diss. Org. N (199/1) 346 346 346 375 515 515 517 518 663 514 514 514 514 514 514 514 514 514 514	476 299 312 406 421	507 124 1022
N N N N N N N N N N	8 8 8 3 8 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8	51 3 427
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	21 55 114 24 24	93 3 582
Atalinity (mg/l) 22 (mg/l)	128 129 115 116	110 66.2 151
Conductivity (mmbo/cm) (mmbo/cm) 287 287 287 285 286 286 286 286 286 286 286 286 286 286	328 353 340 308 308 296	282 180 353
p. 1 6 7 1 1 1 1 1 1 1 1 1 1	7.40 7.43 7.248 7.21 7.32 7.41	7.62 6.67 9.88
Date Collected 3/31/09 3/31/09 - 4/07/09 4/7/10 - 4/13/09 4/7/10 - 4/13/09 4/7/10 - 4/13/09 4/7/10 - 4/13/09 4/12/09 - 6/07/09 5/12/09 - 5/19/09 5/12/09 - 6/07/09 5/12/09 - 5/19/09 5/12/09 - 6/07/09 5/12/09 - 6/07/09 5/12/09 - 6/07/09 5/12/09 - 6/07/09 5/12/09 - 6/07/09 7/22/09 - 8/22/09 8/22/09 - 8/22/09 8/22/09 - 8/22/09 8/22/09 - 9/05/09 9/02/09 - 9/12/09 9/02/09 - 10/22/09 9/02/09 - 11/10/09 11/12/09 - 11/12/09 11/12/09 - 11/12/09 11/12/09 11/12/09 - 11/12/09 11/12/0	2/11/10 - 2/16/10 2/16/10 - 3/10/10 3/10/10 - 3/18/10 3/18/10 - 3/23/10 3/23/10 - 3/26/10 3/26/10 - 3/29/10	Mean Value: Minimum Value: Maximum Value:
Sample Type Outflow		M Mini Maxi
Site #4 Site #	Site #4 Site #4 Site #4 Site #4 Site #4 Site #4	

B-3. Bulk Precipitation

<pre>ty</pre>		4.2 0.1 23.0
Turbidity (NTU) 2.5.3 2.5.4 2.5.4 2.5.5 2.5.4 2.5.6 2.6.7 2.5.6 2.6.6.6 2.6.6.6 2.6.6.7 2.6.6.6.7 2.6.7.7 2.6.6.7.7 2.6.6.7.7 2.6.6.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	- 0.3 - 0. 9.9.7 - 0. 9.7 - 0.	1.7 0.6 6.9
Total P (Hg/l) 6.5 6.5 7.2 8.5 7.4 7.2 8.5 7.4 7.5 8.5 7.4 7.5 8.5 7.4 7.5 8.5 7.4 7.5 8.5 7.4 7.5 8.5 7.4 7.5 8.5 7.4 8.5 8.5 7.2 8.5 8.5 7.2 8.5 8.5 7.2 8.5 8.5 7.2 8.5 8.5 7.2 8.5 7.2 8.5 7.2 8.5 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 7.2 8.5 7.2 8.5 7.2 8.5 7.2 8.5 7.2 8.5 8.5 7.2 8.5 7.2 8.5 8.5 7.2 8.5 8.5 7.2 8.5 8.5 7.2 8.5 8.5 7.2 8.5 8.5 7.2 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	24 33 23 23	136 2 900
Part. (Jugu) 388 387 500 500 500 500 500 500 500 500 500 50	2∞∞2- 6	7 1 22
D . sig . Lo . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	,40652 ,	<u>5</u> - 5
SR P 1 J 1 J 	54 - 5	104 1 829
Total N (Jug./J) 948 948 1364 1364 1093 264 1093 264 1447 201 205 205 205 217 205 217 205 217 205 217 2491 2419 2419 2419 2415 2419 2415 2419 2415 2419 2415 2419 2415 2411 2419 2415 2417 2419 2415 2417 2419 2415 2417 2411 2411 2411 2411 2411 2411 2411	509 613 1024 343	1295 111 6917
Part N (ugd) (ugd) (ugd) 233 55 55 58 830 245 58 830 215 83 830 83 833 215 83 833 237 14 83 237 15 83 237 16 42 28 28 28 28 28 28 28 28 28 28 28 28 28	66 94 66	148 3 830
Diss. Org. (ug /1) (ug /1) (ug /1) (u g/1) 257 253 336 263 336 263 336 263 336 263 336 263 337 263 337 273 337 337 2230 2150 3177 2230 2230 2230 2373 3377 3377 3377 33	156 358 173	461 3 3273
Nox 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 146 147 146 146 147 146 146 147 146 147 146 147 146 147 146 147 147 146 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147 147	254 377 110	224 4 557
NH3 NH3 864 7192 7192 7192 7192 7192 7192 7192 719 710 8 8 710 710 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	211 216 60	464 3 3936
Alkalinity (mg/l) 6.2 6.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4.4 0.0 19.8
Conductivity Muolocm) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 ~ £ 2 9 6	22 95
p. J. p. 1 p. 1	5.75 5.37 5.80 5.73	5.63 4.47 7.02
Date Collected 3/31/09 - 4/03/09 4/309 - 4/14/09 - 5/13/09 5/17/09 - 5/13/09 5/17/09 - 5/13/09 5/19/09 - 5/19/09 5/19/09 - 5/19/09 5/19/09 - 5/19/09 5/21/09 - 5/29/09 6/01/09 - 6/18/09 6/01/09 - 6/17/09 8/13/09 - 6/17/09 8/13/09 - 8/20/09 8/13/09 - 8/20/09 8/13/09 - 8/20/09 8/13/09 - 9/09/09 9/04/09 - 9/09/09 9/04/09 - 9/09/09 9/04/09 - 9/09/09 9/04/09 - 12/18/09 12/18/09 - 12/18/09 12/18/09 - 12/16/09 12/18/09 - 12/16/09 12/17/00 - 2/12/10 2/17/10 - 2/12/10	3/2/10 - 03/13/10 3/13/10 - 3/21/10 3/21/10 - 3/25/10 3/258/10 - 3/29/10	mean Value: Minimum Value: Maximum Value:
Sample Type Bulk Precip. Bulk Precip.	Bulk Precip. Bulk Precip. Bulk Precip. Bulk Precip.	wear Minim⊍ Maximu

APPENDIX C

VERTICAL FIELD PROFILES COLLECTED IN THE ELDER CREEK POND FROM APRIL 2009 – MARCH 2010

Elder Creek Regional Stormwater Treatment Facility Pond Vertical Field Profiles Collected from April 2009 - March 2010

Location	Site	Date	Time	Depth	Temp	pН	SpCond	TDS	DO	DO%	ORP
Location	One	MMDDYY	HHMMSS	meters	°C	Units	µmho/cm	g/l	mg/l	Sat	mV
Elder Ck	Pond	4/13/09	11:14	0.25	24.95	9.87	284	182	17.9	200	331
Elder Ck	Pond	4/13/09	11:15	0.50	24.94	9.86	283	181	17.7	200	343
Elder Ck	Pond	4/13/09	11:17	1.00	23.98	9.24	287	183	12.2	144	332
Elder Ck	Pond	4/13/09	11:18	1.50	22.27	7.51	308	197	1.0	12	269
Elder Ck	Pond	4/13/09	11:19	2.00	21.73	7.34	318	203	0.3	4	96
Elder Ck	Pond	4/13/09	11:19	2.41	21.61	7.19	334	214	0.3	3	61
Elder Ck	Pond	4/13/09	11:23	0.25	24.88	9.83	283	181	18.1	200	319
Elder Ck	Pond	4/13/09	11:24	0.50	24.89	9.83	283	181	17.8	200	327
Elder Ck	Pond	4/13/09	11:24	1.00	24.83	9.81	283	181	17.7	200	333
Elder Ck	Pond	4/13/09	11:26	1.50	22.79	7.79	307	196	2.0	23	266
Elder Ck	Pond	4/13/09	11:27	2.00	21.84	7.35	314	201	0.5	5	89
Elder Ck	Pond	4/13/09	11:27	2.26	21.66	7.26	328	210	0.3	3	61
Elder Ck	Pond	4/23/09	11:57	0.25	24.57	10.00	285	183	16.7	200	388
Elder Ck	Pond	4/23/09	11:58	0.50	24.37	10.00	286	183	16.7	200	388
Elder Ck	Pond	4/23/09	11:59	1.00	23.70	9.78	280	179	14.8	175	384
Elder Ck	Pond	4/23/09	12:01	1.50	23.01	8.75	303	194	3.4	39	355
Elder Ck	Pond	4/23/09	12:02	2.00	22.54	7.62	319	204	1.6	19	49
Elder Ck	Pond	4/23/09	12:04	2.49	22.13	7.00	353	226	1.1	12	-48
	1 ond	1/20/00	12.01	2.10	22.10	1.00	000	220		12	10
Elder Ck	Pond	4/30/09	11:39	0.25	26.60	9.86	230	147	13.6	169	364
Elder Ck	Pond	4/30/09	11:40	0.50	26.09	9.76	230	147	12.4	153	362
Elder Ck	Pond	4/30/09	11:40	1.00	25.22	9.56	230	147	9.3	113	357
Elder Ck	Pond	4/30/09	11:43	1.50	24.63	8.74	266	170	1.4	17	337
Elder Ck	Pond	4/30/09	11:44	2.00	23.53	7.65	333	213	0.4	5	3
Elder Ck	Pond	4/30/09	11:44	2.43	22.68	6.98	392	251	0.4	4	-45
LIUEI CK	FUIU	4/30/09	11.44	2.45	22.00	0.90	392	231	0.4	4	-45
Elder Ck	Pond	5/7/09	12:11	0.25	28.89	9.85	230	147	13.3	173	359
Elder Ck	Pond	5/7/09	12:12	0.20	28.72	9.87	230	147	12.7	164	359
Elder Ck	Pond	5/7/09	12:12	1.00	27.44	9.72	225	144	11.0	140	357
Elder Ck	Pond	5/7/09	12:13	1.50	26.85	9.72	229	144	7.1	88	348
Elder Ck	Pond	5/7/09	12:14	2.00	20.85	9.29 7.22	338	216	1.6	20	133
Elder Ck	Pond	5/7/09	12:15	2.00	23.14	6.84	445	285	1.0	11	-50
LIUEI CK	Fund	5/1/09	12.10	2.39	23.14	0.04	445	205	1.0		-30
Elder Ck	Pond	5/14/09	10:20	0.25	27.93	9.19	231	148	7.5	96	337
Elder Ck	Pond	5/14/09	10:20	0.23	27.88	9.19	231	148	7.2	90 92	335
Elder Ck	Pond	5/14/09	10:21	1.00	27.60	9.06	231	148	6.2	78	330
Elder Ck	Pond	5/14/09	10:22	1.50	27.41	8.83	234	150	3.9	49	323
Elder Ck	Pond	5/14/09	10:23	2.00	26.23	7.06	311	199	0.5	45 6	155
Elder Ck	Pond	5/14/09	10:24	2.46	24.08	6.61	469	300	0.3	3	-27
LIGEI OK	i onu	3/14/03	10.25	2.40	24.00	0.01	403	500	0.5	5	-21
Elder Ck	Pond	6/1/09	12:12	0.25	28.73	7.54	255	163	6.5	85	282
Elder Ck	Pond	6/1/09	12:12	0.23	28.58	7.50	255	163	6.0	77	287
Elder Ck	Pond	6/1/09	12:14	1.00	26.39	6.96	235	158	1.6	20	267
Elder Ck	Pond	6/1/09	12:14	1.50	23.68		236			20 7	172
Elder Ck	Pond	6/1/09	12:15		23.00	6.86 6.85	230	151 147	0.6	4	135
				2.00					0.4	4	48
Elder Ck	Pond	6/1/09	12:17	2.50	22.66	6.85	240	154	0.3		
Elder Ck	Pond	6/1/09	12:18	2.91	22.56	6.78	275	176	0.3	3	12
Eldor Ck	Dond	6/22/00	12:02	0.25	22.20	0 40	204	100	6.6	01	216
Elder Ck Elder Ck	Pond	6/23/09	12:02	0.25	32.38	8.42	294	188	6.6	91	316
	Pond	6/23/09	12:03	0.50	31.91	8.35	295	189	6.4	88	315
Elder Ck	Pond	6/23/09	12:04	1.00	31.48	7.98	298	191	5.4	74	304
Elder Ck	Pond	6/23/09	12:05	1.50	30.58	7.31	306	196	2.4	32	279
Elder Ck	Pond	6/23/09	12:06	2.00	27.94	6.75	319	204	0.6	8	249
Elder Ck	Pond	6/23/09	12:07	2.30	25.30	6.63	357	228	0.4	4	16
	Der -l	7/0/00	44.05	0.05	20.40	0.04	200	400	0.0	140	040
Elder Ck	Pond	7/8/09	11:05	0.25	30.42	8.64	306	196	8.9	119	318
Elder Ck	Pond	7/8/09	11:06	0.50	30.22	8.64	306	196	8.8	116	319
Elder Ck	Pond	7/8/09	11:07	1.00	29.59	8.11	311	199	5.4	70	303
Elder Ck	Pond	7/8/09	11:08	1.50	29.53	8.09	311	199	5.3	69	305
Elder Ck	Pond	7/8/09	11:09	2.00	29.36	7.72	314	201	4.0	53	293
Elder Ck	Pond	7/8/09	11:10	2.36	28.24	6.79	326	209	0.3	4	18

Elder Creek Regional Stormwater Treatment Facility Pond Vertical Field Profiles Collected from April 2009 - March 2010

Location	Site	Date	Time	Depth	Temp	pН	SpCond	TDS	DO	DO%	ORP
Location	One	MMDDYY	HHMMSS	meters	°C	Units	µmho/cm	g/l	mg/l	Sat	mV
Elder Ck	Pond	7/14/09	7:28	0.25	29.27	8.69	295	189	8.2	108	369
Elder Ck	Pond	7/14/09	7:29	0.50	29.27	8.67	294	188	7.6	99	363
Elder Ck	Pond	7/14/09	7:30	1.00	29.22	8.59	293	188	7.2	93	357
Elder Ck	Pond	7/14/09	7:32	1.50	28.82	7.72	295	189	3.1	40	337
Elder Ck	Pond	7/14/09	7:33	2.00	28.55	7.41	292	187	1.4	18	328
Elder Ck	Pond	7/14/09	7:33	2.46	28.15	7.17	285	182	0.8	10	244
	Dand	7/01/00	44.00	0.05	20.24	0.70	205	100	0.7	110	222
Elder Ck Elder Ck	Pond Pond	7/21/09 7/21/09	11:36 11:37	0.25 0.50	30.31 29.95	8.70 8.59	295 296	189 190	8.7 6.8	116 90	332 331
Elder Ck	Pond	7/21/09	11:37	1.00	29.61	8.16	302	193	4.1	54	316
Elder Ck	Pond	7/21/09	11:38	1.50	29.48	7.85	304	194	3.3	43	305
Elder Ck	Pond	7/21/09	11:39	2.00	29.40	7.62	307	197	2.5	33	298
Elder Ck	Pond	7/21/09	11:40	2.46	29.23	7.20	310	199	0.5	6	218
Elder Ck	Pond	8/3/09	10:58	0.25	31.03	8.88	271	173	8.3	112	314
Elder Ck	Pond	8/3/09	10:59	0.50	30.82	8.82	272	174	7.6	102	315
Elder Ck	Pond	8/3/09	11:00	1.00	30.13	8.57	277	177	5.8	77	307
Elder Ck	Pond	8/3/09	11:01	1.50	29.89	8.13	281	180	3.5	46	291
Elder Ck	Pond	8/3/09	11:02	2.00	29.64	7.58	287	184	1.1	14	98
Elder Ck	Pond	8/3/09	11:03	2.50	28.14	7.00	295	189	0.3	4	-28
Elder Ck	Pond	8/11/09	11:09	0.25	31.67	8.44	230	147	9.1	124	321
Elder Ck	Pond	8/11/09	11:10	0.20	31.22	8.50	230	145	9.0	124	326
Elder Ck	Pond	8/11/09	11:10	1.00	30.54	7.62	230	143	6.0	80	297
Elder Ck	Pond	8/11/09	11:12	1.50	30.18	7.33	230	147	3.9	52	290
Elder Ck	Pond	8/11/09	11:12	2.00	29.62	7.07	238	152	0.6	8	255
Elder Ck	Pond	8/11/09	11:14	2.49	27.69	6.87	263	168	0.3	4	-19
Elder Ck	Pond	8/20/09	12:05	0.25	29.04	7.20	223	142	3.4	44	283
Elder Ck	Pond	8/20/09	12:06	0.50	28.82	7.22	238	152	2.7	35	283
Elder Ck	Pond	8/20/09	12:07	1.00	27.15	6.93	304	195	1.1	14	271
Elder Ck	Pond	8/20/09	12:08	1.07	27.08	6.94	304	194	1.0	12	264
Elder Ck	Pond	9/9/09	12:06	0.25	30.33	8.46	238	152	6.9	91	350
Elder Ck	Pond	9/9/09	12:07	0.50	30.09	8.60	236	151	7.4	98	359
Elder Ck	Pond	9/9/09	12:08	1.00	29.37	8.39	238	152	6.7	87	356
Elder Ck	Pond	9/9/09	12:10	1.50	29.21	8.23	240	153	6.1	79	353
Elder Ck	Pond	9/9/09	12:11	2.00	28.73	7.34	245	157	2.7	35	319
Elder Ck	Pond	9/9/09	12:12	2.46	27.99	7.18	280	179	0.8	10	60
Elder Ck	Pond	9/18/09	8:39	0.25	29.35	8.66	250	160	6.9	90	352
Elder Ck	Pond	9/18/09	8:40	0.50	29.37	8.63	249	159	6.9	90	345
Elder Ck	Pond	9/18/09	8:41	1.00	29.37	8.59	249	159	6.7	88	341
Elder Ck	Pond	9/18/09	8:43	1.50	29.37	8.48	249	159	6.4	83	337
Elder Ck	Pond	9/18/09	8:44	2.00	28.90	7.15	265	170	0.5	7	283
Elder Ck	Pond	9/18/09	8:44	2.45	28.15	6.93	291	186	0.3	3	-64
Elder Ck	Pond	9/22/09	10:31	0.25	30.54	8.69	258	165	8.0	107	283
Elder Ck	Pond	9/22/09	10:32	0.50	30.47	8.73	255	163	8.0	107	279
Elder Ck	Pond	9/22/09	10:32	1.00	30.43	8.73	260	166	7.8	104	279
Elder Ck	Pond	9/22/09	10:33	1.50	30.12	7.93	265	169	3.4	45	255
Elder Ck	Pond	9/22/09	10:34	2.00	29.56	7.28	266	170	0.4	5	79
Elder Ck	Pond	9/22/09	10:35	2.49	28.39	6.91	300	192	0.2	3	-71
		0/00/00	44.50	0.05	00.00		004	400	0.0		000
Elder Ck	Pond	9/28/09	11:56	0.25	29.69	8.14	264	169	6.3	83	292
Elder Ck	Pond	9/28/09	11:57	0.50	29.66	8.18	264 265	169 169	6.1	80 60	295
Elder Ck	Pond	9/28/09	11:58	1.00	29.28	7.92	265 267	169 171	4.6	60 50	286
Elder Ck Elder Ck	Pond	9/28/09 9/28/09	11:59 12:00	1.50	29.12	7.76	267 267	171	3.8	50	281
Elder Ck Elder Ck	Pond Pond	9/28/09 9/28/09	12:00	2.00 2.47	29.06 28.27	7.82 6.99	267 302	171 193	3.9 0.3	51 3	284 14
LIUEI UK	FUIU	3/20/09	12.02	2.41	20.21	0.99	302	190	0.5	э	14
Elder Ck	Pond	10/5/09	12:25	0.25	28.44	8.11	277	177	6.5	84	297
Elder Ck	Pond	10/5/09	12:26	0.50	28.28	8.16	277	177	6.7	86	301
Elder Ck	Pond	10/5/09	12:27	1.00	27.81	8.15	275	176	6.2	79	303
Elder Ck	Pond	10/5/09	12:28	1.50	27.67	8.15	274	175	5.7	72	303
Elder Ck	Pond	10/5/09	12:29	2.00	27.59	7.89	276	177	4.3	55	294
Elder Ck	Pond	10/5/09	12:31	2.50	27.41	7.50	304	195	1.0	13	114

Elder Creek Regional Stormwater Treatment Facility Pond Vertical Field Profiles Collected from April 2009 - March 2010

Location	Site	Date	Time	Depth	Temp	рН	SpCond	TDS	DO	DO%	ORP
Location	Olle	MMDDYY	HHMMSS	meters	°C	Units	µmho/cm	g/l	mg/l	Sat	mV
Elder Ck	Pond	10/12/09	12:25	0.25	30.19	8.20	280	179	6.1	81	305
Elder Ck	Pond	10/12/09	12:26	0.50	30.11	8.16	279	179	6.0	79	305
Elder Ck	Pond	10/12/09	12:27	1.00	29.88	8.13	279	179	5.8	76	305
Elder Ck	Pond	10/12/09	12:28	1.50	29.11	7.37	284	181	0.5	6	260
Elder Ck	Pond	10/12/09	12:28	2.00	28.83	7.33	284	182	0.3	3	241
Elder Ck	Pond	10/12/09	12:29	2.50	27.66	7.09	305	195	0.2	2	-18
Elder Ck	Pond	10/12/09	12:30	2.55	27.78	7.13	303	194	0.2	2	-37
Elder Ck	Pond	10/19/09	11:16	0.25	23.37	8.19	283	181	7.9	93	295
Elder Ck	Pond	10/19/09	11:17	0.50	23.39	8.18	283	181	7.6	89	294
Elder Ck	Pond	10/19/09	11:18	1.00	23.38	8.18	284	182	7.4	87	294
Elder Ck	Pond	10/19/09	11:19	1.50	23.38	8.18	285	182	7.5	88	294
Elder Ck	Pond	10/19/09	11:21	2.00	23.38	8.18	285	182	7.1	84	294
Elder Ck	Pond	10/19/09	11:23	2.50	23.35	8.16	286	183	7.0	82	269
Elder Ck	Pond	10/27/09	11:05	0.25	26.18	8.38	294	188	8.5	106	307
Elder Ck	Pond	10/27/09	11:06	0.50	26.14	8.40	294	188	8.4	104	308
Elder Ck	Pond	10/27/09	11:07	1.00	25.93	8.40	294	188	8.2	101	308
Elder Ck	Pond	10/27/09	11:08	1.50	24.98	8.13	294	188	6.2	75	300
Elder Ck	Pond	10/27/09	11:09	2.00	24.48	7.58	297	190	2.4	29	273
Elder Ck	Pond	10/27/09	11:10	2.45	24.33	7.45	300	192	0.3	4	198
Elder Ck	Pond	11/10/09	11:27	0.25	23.31	8.48	312	199	9.0	105	344
Elder Ck	Pond	11/10/09	11:28	0.50	23.29	8.49	312	199	8.7	103	342
Elder Ck	Pond	11/10/09	11:29	1.00	23.20	8.49	311	199	8.7	102	341
Elder Ck	Pond	11/10/09	11:30	1.50	23.11	8.42	312	200	8.0	93	339
Elder Ck	Pond	11/10/09	11:31	2.00	22.97	8.19	315	202	6.0	70	333
Elder Ck	Pond	11/10/09	11:34	2.47	22.90	8.02	317	203	4.8	56	207
Elder Ck	Pond	11/17/09	12:31	0.25	22.30	8.75	308	197	11.6	133	440
Elder Ck	Pond	11/17/09	12:32	0.50	21.91	8.64	310	198	10.4	119	434
Elder Ck	Pond	11/17/09	12:33	1.00	21.37	8.66	309	198	9.9	112	437
Elder Ck	Pond	11/17/09	12:34	1.50	21.20	8.26	318	203	5.8	66	426
Elder Ck	Pond	11/17/09	12:35	2.00	21.18	8.27	317	203	5.7	65	426
Elder Ck	Pond	11/17/09	12:36	2.47	21.18	8.29	317	203	5.8	65	419
Elder Ck	Pond	12/3/09	9:33	0.25	21.17	8.35	323	207	9.3	104	534
Elder Ck	Pond	12/3/09	9:34	0.50	21.17	8.36	323	206	8.7	98	531
Elder Ck	Pond	12/3/09	9:35	1.00	21.13	8.32	324	207	8.2	93	528
Elder Ck	Pond	12/3/09	9:36	1.50	20.98	8.14	328	210	7.1	79	519
Elder Ck	Pond	12/3/09	9:37	2.00	20.44	7.89	330	211	5.1	56	510
Elder Ck	Pond	12/3/09	9:38	2.50	20.08	7.54	335	214	1.6	17	303
Elder Ck	Pond	12/7/09	10:19	0.25	18.20	7.67	311	199	6.3	66	524
Elder Ck	Pond	12/7/09	10:20	0.50	18.20	7.68	311	199	5.9	62	522
Elder Ck	Pond	12/7/09	10:21	1.00	18.21	7.69	311	199	5.8	62	522
Elder Ck	Pond	12/7/09	10:21	1.50	18.19	7.68	311	199	5.6	59	520
Elder Ck	Pond	12/7/09	10:22	2.00	18.15	7.67	311	199	5.4	58	520
Elder Ck	Pond	12/7/09	10:23	2.50	18.15	7.67	311	199	5.3	55	518
Elder Ck	Pond	12/7/09	10:24	2.55	18.16	7.65	311	199	5.1	54	491
	_										
Elder Ck	Pond	12/14/09	10:06	0.25	20.82	8.20	321	205	8.8	98	565
Elder Ck	Pond	12/14/09	10:06	0.50	20.80	8.16	321	206	8.6	96	560
Elder Ck	Pond	12/14/09	10:07	1.00	20.38	7.85	331	212	7.5	83	547
Elder Ck	Pond	12/14/09	10:08	1.50	19.34	7.95	320	205	7.4	80	551
Elder Ck	Pond	12/14/09	10:09	2.00	18.71	7.61	320	205	4.4	48	538
Elder Ck	Pond	12/14/09	10:10	2.50	18.71	7.52	322	206	3.0	32	534
Elder Ck	Pond	12/23/09	10:15	0.25	16.47	7.85	327	209	6.2	63	738
Elder Ck	Pond	12/23/09	10:16	0.50	16.47	7.85	327	209	5.9	61	720
Elder Ck	Pond	12/23/09	10:17	1.00	16.45	7.84	327	210	6.2	63	705
Elder Ck	Pond	12/23/09	10:18	1.50	16.43	7.86	327	209	6.0	61	692
Elder Ck	Pond	12/23/09	10:19	2.00	16.39	7.86	326	209	5.9	60	684
Elder Ck	Pond	12/23/09	10:20	2.50	16.38	7.85	327	209	5.5	56	655

Elder Creek Regional Stormwater Treatment Facility Pond Vertical Field Profiles Collected from April 2009 - March 2010

		Data	Time	Danth	Taman		Cacand	TDO	DO	D0%	
Location	Site	Date	Time	Depth	Temp	pH	SpCond	TDS	DO	DO%	ORP
	_ .	MMDDYY	HHMMSS	meters	°C	Units	µmho/cm	g/l	mg/l	Sat	mV
Elder Ck	Pond	12/29/09	11:24	0.25	15.67	7.73	334	214	7.2	73	455
Elder Ck	Pond	12/29/09	11:25	0.50	15.67	7.76	335	214	6.6	67	457
Elder Ck	Pond	12/29/09	11:26	1.00	15.66	7.78	334	214	6.4	65	458
Elder Ck	Pond	12/29/09	11:27	1.50	15.64	7.80	334	214	6.5	63	460
Elder Ck	Pond	12/29/09	11:27	2.00	15.63	7.79	335	214	6.3	63	457
Elder Ck	Pond	12/29/09	11:28	2.50	15.63	7.78	335	214	6.0	61	456
Elder Ck	Pond	12/29/09	11:29	2.60	15.64	7.79	335	214	6.0	61	353
Elder Ck	Pond	1/19/2010	12:50:19	0.25	15.64	8.12	333	213	10.9	110	596
Elder Ck	Pond	1/19/2010	12:51:15	0.50	15.34	8.08	334	214	10.4	104	588
Elder Ck	Pond	1/19/2010	12:52:10	1.00	15.12	8.12	335	214	10.4	103	578
Elder Ck	Pond	1/19/2010	12:53:21	1.50	14.90	8.15	333	213	10.4	103	569
Elder Ck	Pond	1/19/2010	12:54:38	2.00	13.52	8.27	331	213	11.3	103	564
Elder Ck	Pond	1/19/2010	12:56:40	2.58	12.89	8.23	332	212	10.2	97	504
LIGELOK	1 Uliu	1/13/2010	12.30.40	2.50	12.03	0.25	552	212	10.2	51	500
Elder Ck	Pond	1/28/2010	14:41:59	0.25	17.94	7.61	343	220	7.7	82	523
Elder Ck	Pond	1/28/2010	14:42:50	0.50	17.65	7.59	345	220	7.5	79	520
Elder Ck	Pond	1/28/2010	14:43:45	1.00	17.27	7.51	346	221	7.1	74	524
Elder Ck	Pond	1/28/2010	14:44:44	1.50	17.07	7.49	346	222	6.8	70	523
Elder Ck	Pond	1/28/2010	14:45:36	2.00	16.98	7.46	347	222	6.6	69	525
Elder Ck	Pond	1/28/2010	14:47:10	2.44	16.87	7.32	349	223	5.5	57	440
2.00. 01	. ond	.,20,2010			10101		0.10		0.0	0.	
Elder Ck	Pond	2/11/2010	10:54:52	0.25	14.65	8.10	339	217	9.6	94	446
Elder Ck	Pond	2/11/2010	10:55:47	0.50	14.65	7.75	339	217	9.4	92	445
Elder Ck	Pond	2/11/2010	10:56:34	1.00	14.62	7.74	339	217	9.3	91	444
Elder Ck	Pond	2/11/2010	10:57:20	1.50	14.57	7.77	340	217	9.6	95	441
Elder Ck	Pond	2/11/2010	10:58:41	2.00	14.53	7.80	340	218	9.6	94	439
Elder Ck	Pond	2/11/2010	11:00:16	2.50	14.51	7.57	346	222	2.1	21	320
Elder Ck	Pond	2/16/2010	11:48:02	0.25	13.53	8.37	335	214	10.6	102	407
Elder Ck	Pond	2/16/2010	11:48:49	0.50	13.52	8.38	335	214	10.4	100	405
Elder Ck	Pond	2/16/2010	11:49:45	1.00	13.44	8.39	334	214	10.3	98	403
Elder Ck	Pond	2/16/2010	11:50:38	1.50	13.43	8.40	334	214	10.2	98	402
Elder Ck	Pond	2/16/2010	11:51:38	2.00	13.36	8.40	334	214	10.1	97	400
Elder Ck	Pond	2/16/2010	11:53:03	2.45	13.32	8.37	334	214	10.1	96	385
	_										
Elder Ck	Pond	3/10/2010	15:10:46	0.25	17.88	8.46	357	228	11.5	122	420
Elder Ck	Pond	3/10/2010	15:11:41	0.50	17.76	8.48	357	229	11.4	120	416
Elder Ck	Pond	3/10/2010	15:12:52	1.00	17.57	8.55	358	229	11.0	115	408
Elder Ck	Pond	3/10/2010	15:13:57	1.50	17.43	8.52	358	229	11.0	115	408
Elder Ck	Pond	3/10/2010	15:15:30	2.00	16.68	8.48	357	228	10.1	104	410
Elder Ck	Pond	3/10/2010	15:17:25	2.46	16.47	8.00	429	274	0.4	4	407
Eldor Clr	Dond	2/22/2040	12.50.00	0.25	10.12	7.95	319	204	0.5	102	392
Elder Ck	Pond	3/23/2010	12:59:08	0.25	19.12				9.5	102	
Elder Ck	Pond	3/23/2010	13:00:06	0.50	19.10	7.93	319	204	9.2	99	392
Elder Ck	Pond	3/23/2010	13:01:13	1.00	18.21	7.97	319	204	9.0	96	390
Elder Ck	Pond	3/23/2010	13:02:12	1.50	18.01	7.86	320	205	8.6	91	394
Elder Ck	Pond	3/23/2010	13:03:13	2.00	18.00	7.87	320	205	8.7	92	395
Elder Ck	Pond	3/23/2010	13:04:37	2.50	17.94	7.80	326	208	7.9	83	382
Elder Ck	Pond	3/23/2010	13:07:59	2.54	17.95	6.97	320	205	1.3	14	111

APPENDIX D

QUALITY ASSURANCE DATA

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	v	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Alkalinity	mg/l	09-1214	Site 4 Field Dup	03/31/09	03/31/09	04/13/09	129	128	128.5	0.7	0.55	0-4
Alkalinity	mg/l	09-1281	Site 1	4/2 - 4/7/09	04/07/09	04/14/09	139	138	138.5	0.7	0.51	0-4
Alkalinity	mg/l	09-1421	Site 4	4/13 - 4/16/09	04/16/09	04/17/09	109	108	108.5	0.7	0.65	0-4
Alkalinity	mg/l	09-1516	Site 4	4/16 - 4/23/09	04/23/09	04/29/09	114	115	114.5	0.7	0.62	0-4
Alkalinity	mg/l	09-1597	Site #1	4/30 - 5/7/09	05/07/09	05/08/09	151	150	150.5	0.7	0.47	0-4
Alkalinity	mg/l	09-1601	Site #4	4/30 - 5/7/09	02/07/09	05/08/09	97.8	97	97.4	0.6	0.58	0-4
Alkalinity	mg/l	09-1662	Rain	05/13/09	05/14/09	05/15/09	6.2	6.0	6.1	0.1	2.32	0-4
Alkalinity	mg/l	09-1793	Site 4	5/26 - 6/1/09	06/01/09	06/03/09	72.4	72	72.2	0.3	0.39	0-4
Alkalinity	mg/l	09-1795	Rain	5/26 - 5/29/09	06/01/09	06/03/09	0.8	0.8	0.8	0.0	0.00	0-4
Alkalinity	mg/l	09-1979	Rain	6/9 - 6/17/09	06/17/09	06/22/09	1.2	1.2	1.2	0.0	0.00	0-4
Alkalinity	mg/l	09-2124	Site #3	06/30/09	07/08/09	07/13/09	81.8	81.6	81.7	0.1	0.17	0-4
Alkalinity	mg/l	09-2192	Rain	7/8 - 7/14/09	07/14/09	07/15/09	2.2	2.2	2.2	0.0	0.00	0-4
Alkalinity	mg/l	09-2249	Site #4 Field Dup	7/14 - 7/21/09	07/21/09	07/21/09	148	147	147.5	0.7	0.48	0-4
Alkalinity	mg/l	09-2306	Rain	07/26/09	07/28/09	07/28/09	4.4	4.6	4.5	0.1	3.14	0-4
Alkalinity	mg/l	09-2413	Site #4 Field Dup	08/03/09	08/03/09	08/04/09	114	113	113.5	0.7	0.62	0-4
Alkalinity	mg/l	09-2527	Rain	8/3 - 8/7/09	08/11/09	08/12/09	2.2	2.2	2.2	0.0	0.00	0-4
Alkalinity	mg/l	09-2718	Site #4	8/13 - 8/19/9	08/21/09	08/21/09	76.4	76.8	76.6	0.3	0.37	0-4
Alkalinity	mg/l	09-2726	Rain	08/20/09	08/21/09	08/21/09	0	0	0.1	0.0	0.00	0-4
Alkalinity	mg/l	09-2978	Site #2 SB	09/04/09	09/04/09	09/04/09	0.6	0.6	0.6	0.0	0.00	0-4
Alkalinity	mg/l	09-2984	Rain SB	09/04/09	09/04/09	09/04/09	0.6	0.6	0.6	0.0	0.00	0-4
Alkalinity	mg/l	09-3439	REB	09/28/09	09/28/09	09/30/09	1.0	1.0	1.0	0.0	0.00	0-4
Alkalinity	mg/l	10-0032	Rain Blank	01/05/10	01/05/10	01/11/10	0.8	0.8	0.8	0.0	0.00	0-4
Alkalinity	mg/l	10-0083	Rain	01/17/10	01/17/10	01/22/10	11.6	11.4	11.5	0.1	1.23	0-4
Alkalinity	mg/l	10-0160	Rain	1/19 - 1/22/10	01/22/10	01/27/10	8.2	8.0	8.1	0.1	1.75	0-4
Alkalinity	mg/l	10-0230	Site #4	1/22 - 1/28/10	01/28/10	02/01/10	126	126	126.0	0.0	0.00	0-4
Alkalinity	mg/l	10-0252	Site #4	1/28 - 2/3/10	02/03/10	02/08/10	133	133	133.0	0.0	0.00	0-4
Alkalinity	mg/l	10-0258	Rain Blank	02/03/10	02/03/10	02/08/10	0.2	0.2	0.2	0.0	0.00	0-4
Alkalinity	mg/l	10-0376	Rain	02/12/10	02/16/10	02/18/10	2.6	2.6	2.6	0.0	0.00	0-4
Alkalinity	mg/l	10-0675	Rain	03/21/10	03/23/10	03/26/10	7.8	7.6	7.7	0.1	1.84	0-4

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	w	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Ammonia	hg/l	09-1282	Site #2	60/20/70	04/02/09	04/16/09	97	92	94.5	3.5	3.74	0-10
Ammonia	hg/l	09-1394	Site #2	04/13/09	04/13/09	04/17/09	75	77	76.0	1.4	1.86	0-10
Ammonia	hg/l	09-1420	Site #2	04/16/09	04/16/09	04/17/09	68	68	68.0	0.0	0.00	0-10
Ammonia	hg/l	09-1603B	Rain Equipment Blank	05/07/09	05/07/09	05/12/09	0	0	0	0.0	0.00	0-10
Ammonia	hg/l	09-1663	Site #1	05/14/09	05/18/09	05/28/09	149	141	145.0	5.7	3.90	0-10
Ammonia	hg/l	09-1673	Site #2	05/19/09	05/19/09	05/28/09	59	63	61.0	2.8	4.64	0-10
Ammonia	hg/l	09-1711	Site #1	05/20/09	05/21/09	06/16/09	259	257	258.0	1.4	0.55	0-10
Ammonia	hg/l	09-1893	Site #4/Outflow Field Dup	06/01/09-06/09/09	06/00/00	06/17/09	21	19	20.0	1.4	7.07	0-10
Ammonia	hg/l	09-1976	Site #3	06/17/09	06/17/09	06/17/09	0	0	0	0.0	0.00	0-10
Ammonia	μg/l	09-2045	Site #4/Outflow Field Dup	06/23/09-06/30/09	06/30/09	07/22/09	27	23	25.0	2.2	8.79	0-10
Ammonia	hg/l	09-2187	Site #1	07/13/09	07/14/09	07/22/09	0	0	0	0.0	0.00	0-10
Ammonia	hg/l	09-2306	Site #4/Outflow	07/26/09	07/28/09	08/17/09	549	552	550.5	2.1	0.39	0-10
Ammonia	μg/l	09-2409	Site #3	07/28/09	08/03/09	08/18/09	38	39	38.5	0.7	1.84	0-10
Ammonia	hg/l	09-2720	Rain	08/13/09-08/19/09	08/21/09	08/24/09	0	0	0	0.0	0.00	0-10
Ammonia	hg/l	09-2975p	Site #1	08/28/09-09/04/09	09/04/09	09/28/09	164	157	160.5	4.9	3.08	0-10
Ammonia	μg/l	09-3438p	Rain	09/22/09-09/27/09	09/28/09	1 0/1 4/09	1517	1518	1517.5	0.7	0.05	0-10
Ammonia	hg/l	09-3888p	Site #4	10/27/09-11/05/09	11/05/09	11/30/09	21	19	20.0	1.4	7.07	0-10
Ammonia	hg/l	09-4078p	Site #1	11/17/09-11/30/09	11/30/09	12/18/09	43	42	42.5	0.7	1.66	0-10
Ammonia	hg/l	09-4188p	Rain Field Dup	12/04/09-12/07/09	12/07/09	12/18/09	337	321	329.0	11.3	3.44	0-10
Ammonia	hg/l	09-4480P	Rain	12/25/09	12/30/09	01/14/10	870	865	867.5	3.5	0.41	0-10
Ammonia	hg/l	10-0026P	Site #4	12/29/09 - 01/05/10	01/05/10	02/09/10	22	19	20.3	1.8	8.73	0-10
Ammonia	hg/l	10-0158P	Site # 3	01/22/10	01/22/10	02/09/10	158	164	161.0	4.2	2.64	0-10
Ammonia	hg/l	10-0229P	Site # 3	01/22/10-01/28/10	01/28/10	02/09/10	39	34	36.5	3.5	9.69	0-10
Ammonia	hg/l	10-0250P	Site # 2	02/03/10	02/03/10	02/09/10	125	128	126.5	2.1	1.68	0-10
Ammonia	hg/l	10-0358P	Site # 4	02/03/10-02/11/10	02/12/10	03/01/10	50	58	54.0	5.0	9.31	0-10
Ammonia	hg/l	10-0378P	Site # 3	02/12/10	02/17/10	03/01/10	36	42	39.0	3.6	9.26	0-10
Ammonia	hg/l	10-0533P	Site # 2	03/10/10	03/10/10	03/24/10	204	207	205.5	2.1	1.03	0-10
Ammonia	hg/l	10-0541P	Rain Equipment Blank	03/10/10	03/10/10	03/24/10	0	0	0.1	0.0	0.00	0-10
Ammonia	l/gµ	10-0744P	Rain	03/28/10-03/29/10	03/29/10	04/12/10	60	62	61.0	1.4	2.32	0-10

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	s	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Color	PCU	09-1215F	Site 4 Blank	03/31/09	03/31/09	04/01/09	0	0	0.1	0.0	0.00	0-5
Color	PCU	09-1395F	Site 4	04/13/09	04/13/09	04/14/09	30	30	30.0	0.0	0.00	0-5
Color	PCU	09-1422F	Rain	04/14/09	04/16/09	04/17/09	12	11	11.5	0.1	0.62	0-5
Color	PCU	09-1516F	Site 4	04/16/09-04/23/09	04/23/09	04/28/09	23	23	23.0	0.0	0.00	0-5
Color	PCU	09-1560F	Site 4	4/24/09-4/28/09	04/30/09	05/01/09	39	38	38.5	0.7	1.84	0-5
Color	PCU	09-1603F	Rain Blank	02/02/09	02/07/09	05/08/09	0	0	0.1	0.0	0.00	0-5
Color	PCU	09-1661F	Site 4 F.D.	5/08/09- 5/14/09	05/14/09	05/14/09	38	38	38.0	0.0	0.00	0-5
Color	PCU	09-1673F	Site 2	05/19/09	05/19/09	05/20/09	35	34	34.5	0.7	2.05	0-5
Color	PCU	09-1729F	Rain	5/22/09-5/25/09	05/26/09	05/28/09	7	8	7.5	0.1	0.95	0-5
Color	PCU	09-1796F	Rain Blank	06/01/09	06/01/09	06/03/09	0	0	0.1	0.0	0.00	0-5
Color	PCU	09-1893F	Site 4 F.D.	6/1/09- 6/9/09	60/60/90	60/60/90	62	61	61.5	0.7	1.15	0-5
Color	PCU	09-1979F	Site Rain	6/9/09-6/17/09	06/17/09	06/18/09	10	11	10.5	0.1	0.68	0-5
Color	PCU	09-2192F	Rain	07/08/09-07/14/09	07/14/09	07/15/09	2	2	2.0	0.0	0.00	0-5
Color	PCU	09-2403F	Site #1	07/28/09	08/03/09	08/04/09	38	38	38.0	0.0	0.00	0-5
Color	PCU	09-2413F	Site#4 F.D.	07/28/09-08/03/09	08/03/09	08/04/09	41	44	42.5	1.5	3.50	0-5
Color	PCU	09-2527F	Rain	08/03/09-08/07/09	08/11/09	08/12/09	2	2	2.0	0.0	0.00	0-5
Color	PCU	09-2718F	Site# 4	08/11/09-08/20/09	08/21/09	08/21/09	41	42	41.5	0.7	1.70	0-5
Color	PCU	09-2726F	Rain	08/20/09	08/21/09	08/21/09	1	1	1.0	0.0	0.00	0-5
Color	PCU	09-2975F	Site #1	08/28/09-09/04/09	09/04/09	09/04/09	62	63	62.5	0.7	1.13	0-5
Color	PCU	09-2984F	Rain Blank	09/04/09	09/04/09	09/04/09	0	0	0.1	0.0	0.00	0-5
Color	PCU	09-3439F	Rain Blank	09/28/09	09/28/09	00/30/09	0	0	0.1	0.0	0.00	0-5
Color	PCU	10-0031F	Site #4 Blank	01/05/10	01/05/10	01/05/10	0.1	0.1	0.1	0.0	0.00	0-5
Color	PCU	10-0032F	Rain Blank	01/05/10	01/05/10	01/05/10	0.1	0.1	0.1	0.0	0.00	0-5
Color	PCU	10-0083F	Rain	01/17/10	01/19/10	01/19/10	13	13	13.0	0.0	0.00	0-5
Color	PCU	10-0160F	Rain	01/19/10-01/22/10	01/22/10	01/22/10	6	9	6.0	0.0	0.00	0-5
Color	PCU	10-0230F	Site #4	01/22/10-01/28/10	01/28/10	01/29/10	22	22	22.0	0.0	0.00	0-5
Color	PCU	10-0252F	Site #4	01/28/10-02/03/10	02/03/10	02/04/10	18	18	18.0	0.0	0.00	0-5
Color	PCU	10-0360F	Rain	02/05/10-02/09/10	02/12/10	02/12/10	4	4	4.0	0.0	0.00	0-5
Color	PCU	10-0376F	Rain	02/12/10	02/16/10	02/17/10	3	3	3.0	0.0	0.00	0-5

Sample Duplicate Recovery Study Elder Creek Regional Stormwater Treatment Facility	
---	--

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	v	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Conductivity	μΩ	09-1215	Site 4 Blank	03/31/09	03/31/09	04/21/09	2.4	2.4	2.4	0.0	0.00	0-5
Conductivity	μΩ	09-1516	Site 4	4/16 - 4/23/09	04/23/09	05/05/09	265	272	268.5	4.9	1.84	0-5
Conductivity	μΩ	09-1597	Site 1	4/30 - 5/7/09	02/02/09	05/12/09	367	366	366.5	0.7	0.19	0-5
Conductivity	μΩ	09-1601	Site 4	4/30 - 5/7/09	05/07/09	05/12/09	271	273	272.0	1.4	0.52	0-5
Conductivity	μΩ	09-1662	Rain	05/13/09	05/14/09	05/18/09	30.0	30.2	30.1	0.1	0.47	0-5
Conductivity	μΩ	09-1669	Rain	05/17/09-05/18/09	05/18/09	05/26/09	20.4	20.4	20.4	0.0	0.00	0-5
Conductivity	μΩ	09-1672	Site 1	05/18/09	05/19/09	05/26/09	252	254	253.0	1.4	0.56	0-5
Conductivity	μΩ	09-1729	Rain	05/22/09-05/26/09	05/26/09	06/19/09	9.3	9.3	9.3	0.0	0.00	0-5
Conductivity	μΩ	09-1894	Rain	6/1 - 6/9/09	60/60/90	06/23/09	11.1	11.2	11.2	0.1	0.63	0-5
Conductivity	μΩ	09-2042	Site #2	06/30/09	06/30/09	02/06/09	403	405	404.0	1.4	0.35	0-5
Conductivity	μΩ	09-2124	Site #3	06/30/09	07/08/09	07/27/09	244	243	243.5	0.7	0.29	0-5
Conductivity	μΩ	09-2412	Site #4	7/28 - 8/3/09	08/03/09	07/29/09	282	282	282.0	0.0	0.00	0-5
Conductivity	μΩ	09-2416	Rain Equipment Blank	08/03/09	08/03/09	08/10/09	1.9	1.9	1.9	0.0	0.00	0-5
Conductivity	рΩ	09-2722	Site 1	08/20/09	08/21/09	08/10/09	184	184	184.0	0.0	0.00	0-5
Conductivity	рΩ	09-2978	Site 2 Sample Blank	09/04/09	09/04/09	09/01/09	1.9	1.9	1.9	0.0	0.00	0-5
Conductivity	μΩ	09-3278	Site 4 Outflow	09/09/09-09/18/09	09/18/09	09/25/09	263	263	263.0	0.0	0.00	0-5
Conductivity	лΩ	09-3436	Site 4 Outflow	09/22/09-09/28/09	09/28/09	09/25/09	269	269	269.0	0.0	0.00	0-5
Conductivity	μΩ	09-3538	Rain Equipment Blank	10/05/09	10/05/09	10/06/09	1.9	1.9	1.9	0.0	0.00	0-5
Conductivity	рΩ	09-3795	Site 4	10/19/09-10/27/09	10/27/09	10/06/09	250	250	250.0	0.0	0.00	0-5
Conductivity	лΩ	09-3890	Site 2 Sample Blank	11/05/09	11/05/09	10/29/09	2.0	2.0	2.0	0.0	0.00	0-5
Conductivity	μΩ	09-3916	Site 4	11/05/09-11/10/09	11/10/09	11/17/09	303	303	303.0	0.0	0.00	0-5
Conductivity	рΩ	09-4193	Rain Equipment Blank	12/07/09	12/07/09	12/29/09	1.9	1.9	1.9	0.0	0.00	0-5
Conductivity	μΩ	10-0027	Rain	01/01/10	01/05/10	01/25/10	14.4	14.4	14.4	0.0	0.00	0-5
Conductivity	μΩ	10-0252	Site #4	01/28/10-02/03/10	02/03/10	02/05/10	339	339	339.0	0.0	0.00	0-5
Conductivity	μΩ	10-0255	Site #2 Blank	02/03/10	02/03/10	02/05/10	1.8	1.8	1.8	0.0	0.00	0-5
Conductivity	лΩ	10-0535	Site #4	02/16/10-03/10/10	03/10/10	03/25/10	353	353	353.0	0.0	0.00	0-5
Conductivity	рΩ	10-0651	Rain F.D.	03/11/10-03/13/10	03/18/10	03/25/10	7.0	7.0	7.0	0.0	0.00	0-5
Conductivity	Ωų	10-0675	Rain	03/21/10	03/23/10	04/13/10	13.3	12.9	13.1	0.3	2.16	0-5
Conductivity	μΩ	10-0742	Site #3	03/28/10-03/29/10	03/29/10	04/13/10	232	232	232.0	0.0	0.00	0 - 3.7

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	S	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
NOX	l/Bri	09-1284f	Site #4 Field Dup	03/31/09-04/07/09	04/07/09	04/09/09	20	72	71.0	1.4	1.99	0-4
NOX	l/bri	09-1560f	Site #4	04/24/09-04/28/09	04/30/09	04/30/09	1	1	1.0	0.0	0.00	0-4
NOX	l/Bri	09-1662f	Rain	05/13/09	05/14/09	05/15/09	438	435	436.5	2.1	0.49	0-4
NOX	l/gri	09-1672f	Site #1	05/18/09	05/19/09	05/20/09	140	143	141.5	2.1	1.50	0-4
NOX	l/bri	09-1793f	Site #4 / Outflow	5/26/09 - 6/01/09	06/01/09	06/03/09	13	13	13.0	0.0	0.00	0-4
NOX	hg/l	09-1892f	Site #4/Outflow	06/01/09-06/09/09	60/60/90	06/11/09	0	0	0	0.0	0.00	0-4
NOX	hg/l	09-2129f	Rain	06/30/09-07/08/09	07/08/09	07/10/09	74	73	73.5	0.7	0.96	0-4
NOX	l/bri	09-2192f	Rain	07/08/09-/07/14/09	07/14/09	07/16/09	143	151	147.3	5.5	3.74	0-4
NOX	hg/l	09-2403f	Site #1	07/28/09	08/03/09	08/06/09	523	523	523.0	0.0	0.00	0-4
NOX	l/bri	09-2413f	Site #4 Field Dup	07/28/09-08/03/09	08/03/09	08/06/09	5	4	4.5	0.1	1.59	0-4
NOX	l/Bri	09-2720f	Rain	08/13/09-08/19/09	08/21/09	08/21/09	96	98	97.0	1.4	1.46	0-4
NOX	hg/l	09-2977f	Site #2	08/28/09-09/04/09	09/04/09	09/04/09	80	75	77.5	2.9	3.74	0-4
NOX	hg/l	09-2983f	Rain	08/28/09-09/04/09	09/04/09	09/02/09	136	143	139.5	4.9	3.55	0-4
NOX	l/bri	09-3438f	Rain	09/22/09-09/27/09	09/28/09	00/30/09	65	67	66.0	1.4	2.14	0-4
NOX	hg/l	09-3536f	Site #4 / Outflow	09/28/09-10/05/09	10/05/09	10/07/09	0	0	0.1	0.0	0.00	0-4
NOX	hg/l	09-4078f	Site #1	11/17/09-11/30/09	11/30/09	12/02/09	0	0	0	0.0	0.00	0-4
NOX	hg/l	09-4188f	Rain Field Dup	12/04/09-12/07/09	12/07/09	12/09/09	80	85	82.7	3.3	3.93	0-4
NOX	hg/l	09-1020f	Site #1	12/25/09-12/29/09	12/30/09	03/20/09	23181	23160	23170.5	14.8	0.06	0-4
NOX	l/bri	09-4476f	Site #1	12/25/09-12/29/09	12/30/09	12/31/09	121	125	123	2.8	2.30	0-4
NOX	hg/l	10-0026f	Site #4	12/29/09 - 01/05/10	01/05/10	01/06/10	22	22	22.0	0.0	0.00	0-4
NOX	l/bri	10-0027f	Rain	01/01/10	01/05/10	01/06/10	173	172	172.5	0.7	0.41	0-4
NOX	hg/l	10-0229f	Site # 3	01/22/10-01/28/10	01/28/10	01/29/10	14	13.4	13.7	0.4	3.10	0-4
NOX	hg/l	10-0252f	Site # 4	01/28/10-02/03/10	02/03/10	02/05/10	51	51	51.0	0.0	0.00	0-4
NOX	l/bri	10-0359f	Site # 4 Field Dup	02/03/10-02/11/10	02/12/10	02/12/10	12	11	11.5	0.1	0.62	0-4
NOX	hg/l	10-0376f	Rain	02/12/10	02/16/10	02/17/10	186	196	191.0	7.1	3.70	0-4
NOX	hg/l	10-0533f	Site # 2	03/10/10	03/10/10	03/12/10	119	119	119.0	0.0	0.00	0-4
NOX	hg/l	10-0650f	Rain	03/11/10-03/13/10	03/18/10	03/19/10	76	76	76.0	0.0	0.00	0-4
NOX	l/bri	10-0744f	Rain	03/28/10-03/29/10	03/29/10	03/31/10	110	114	112.0	2.8	2.53	0-4

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	S	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Нd	s.u.	09-1214	Site 4 Field Dup	03/31/09	03/31/09	04/13/09	7.85	7.83	7.8	0.0	0.18	0-2
РН	s.u.	09-1281	Site 1	04/02/09 - 04/07/09	04/07/09	04/14/09	7.46	7.47	7.5	0.0	0.09	0-2
РН	s.u.	09-1421	Site 4	04/13/09 - 04/16/09	04/16/09	04/17/09	8.63	8.60	8.6	0.0	0.25	0-2
РН	s.u.	09-1516	Site 4	04/16/09 - 04/23/09	04/23/09	04/29/09	7.61	7.65	7.6	0.0	0.37	0-2
РН	s.u.	09-1597	Site #1	04/30/09 - 05/07/09	05/07/09	05/08/09	7.82	7.80	7.8	0.0	0.18	0-2
РН	s.u.	09-1601	Site #4	04/30/09 - 05/07/09	05/07/09	05/08/09	7.70	7.69	7.7	0.0	0.09	0-2
РН	s.u.	09-1662	Rain	05/13/09	05/13/09	05/15/09	5.91	5.90	5.9	0.0	0.12	0-2
РН	s.u.	09-1793	Site 4	05/26/09 - 06/01/09	06/01/09	06/03/09	7.62	7.63	7.6	0.0	0.09	0-2
РН	s.u.	09-1795	Rain	05/26/09 - 05/29/09	06/01/09	06/03/09	4.82	4.83	4.8	0.0	0.15	0-2
РН	s.u.	09-1979	Rain	06/09/09 - 06/17/09	06/17/09	06/22/09	4.96	4.98	5.0	0.0	0.28	0-2
РН	s.u.	09-2124	Site #3	06/30/09	07/08/09	07/13/09	7.65	7.63	7.6	0.0	0.19	0-2
РН	s.u.	09-2192	Rain	07/08/09 - 07/14/09	07/14/09	07/15/09	5.44	5.43	5.4	0.0	0.13	0-2
РН	s.u.	09-2249	Site #4 f.d.	07/14/09 - 07/21/09	07/21/09	07/21/09	7.98	7.94	8.0	0.0	0.36	0-2
РН	s.u.	09-2306	Rain	07/26/09	07/26/09	07/28/09	6.02	6.00	6.0	0.0	0.24	0-2
РН	s.u.	09-2527	Rain	08/03/09 - 08/07/09	08/11/09	08/12/09	5.41	5.42	5.4	0.0	0.13	0-2
РН	s.u.	09-3439	REB	09/28/09	09/28/09	09/30/09	5.59	5.60	5.6	0.0	0.13	0-2
РН	s.u.	09-3537	Site #4 SB	10/05/09	10/05/09	10/06/09	5.59	5.59	5.6	0.0	0.00	0-2
РН	s.u.	09-3892	SB#4	11/05/09	11/05/09	11/05/09	4.96	4.99	5.0	0.0	0.43	0-2
РН	s.u.	09-3916	Site #4	11/05/09 - 11/10/09	11/10/09	11/13/09	7.61	7.61	7.6	0.0	0.00	0-2
РН	s.u.	09-4078	Site #1	11/17/09 - 11/30/09	11/30/09	12/03/09	7.26	7.24	7.3	0.0	0.20	0-2
РН	s.u.	09-4188	Rain Field Dup	12/03/09 - 12/07/09	12/07/09	12/16/09	5.71	5.73	5.7	0.0	0.25	0-2
РН	s.u.	09-4453	Rain	12/18/09	12/23/09	01/05/10	6.44	6.45	6.4	0.0	0.11	0-2
РН	s.u.	09-4477	Site #3	12/29/09	12/30/09	01/05/10	7.48	7.49	7.5	0.0	0.09	0-2
РН	s.u.	09-4480	Rain	12/25/09	12/30/09	01/05/10	6.32	6.30	6.3	0.0	0.22	0-2
РН	s.u.	10-0032	Rain	01/05/10	01/05/10	01/11/10	5.71	5.72	5.7	0.0	0.12	0-2
РН	s.u.	10-0083	Rain	01/17/10	01/17/10	01/22/10	6.53	6.51	6.5	0.0	0.22	0-2
РН	s.u.	10-0160	Rain	1/19 - 1/22/10	01/22/10	01/27/10	6.27	6.28	6.3	0.0	0.11	0-2
РН	s.u.	10-0230	Site #4	1/22 - 1/28/10	01/28/10	02/01/10	7.68	7.70	7.7	0.0	0.18	0-2
Нq	s.u.	10-0252	Site #4	1/28 - 2/3/10	02/03/10	02/08/10	7.80	7.79	7.8	0.0	0.09	0-2

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	Ø	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
SRP	l/gri	09-1284f	Site #4 Field Dup	03/31/09-04/07/09	04/07/09	04/09/09	73	72	72.5	0.7	0.98	0-5
SRP	l/Bri	09-1560f	Site #4	04/24/09-04/28/09	04/30/09	04/30/09	57	57	57.0	0.0	0.00	0-5
SRP	hg/l	09-1662f	Rain	05/13/09	05/14/09	05/15/09	243	245	244.0	1.4	0.58	0-5
SRP	hg/l	09-1672f	Site #1	05/18/09	05/19/09	05/20/09	277	283	280.0	4.2	1.52	0-5
SRP	hg/l	09-1793f	Site #4 / Outflow	5/26/09 - 6/01/09	06/01/09	06/03/09	336	343	339.5	4.9	1.46	0-5
SRP	hg/l	09-1892f	Site #4/Outflow	06/01/09-06/09/09	60/60/90	06/11/09	333	332	332.5	0.7	0.21	0-5
SRP	hg/l	09-2129f	Rain	06/30/09-07/08/09	07/08/09	07/10/09	0	0	0	0.0	0.00	0-5
SRP	l/gµ	09-2192f	Rain	07/08/09-/07/14/09	07/14/09	07/16/09	0.15	0.14	0.1	0.0	4.88	0-5
SRP	hg/l	09-2403f	Site #1	07/28/09	08/03/09	08/06/09	199	204	201.5	3.5	1.75	0-5
SRP	l/gu	09-2413f	Site #4 Field Dup	07/28/09-08/03/09	08/03/09	08/06/09	317	316	316.5	0.7	0.22	0-5
SRP	hg/l	09-2720f	Rain	08/13/09-08/19/09	08/21/09	08/21/09	0	0	0	0.0	0.00	0-5
SRP	hg/l	09-2977f	Site #2	08/28/09-09/04/09	09/04/09	09/04/09	490	493	491.5	2.1	0.43	0-5
SRP	hg/l	09-2983f	Rain	08/28/09-09/04/09	09/04/09	09/02/09	5	4	4.5	0.1	1.59	0-5
SRP	hg/l	09-3438f	Rain	09/22/09-09/27/09	09/28/09	00/30/09	95	94	94.5	0.7	0.75	0-5
SRP	hg/l	09-3536f	Site #4 / Outflow	09/28/09-10/05/09	10/05/09	10/07/09	204	218	211.0	9.9	4.69	0-5
SRP	hg/l	09-3888f	Site #4	10/27/09-11/05/09	11/05/09	11/06/09	290	294	292.0	2.8	0.97	0-5
SRP	hg/l	09-4078f	Site #1	11/17/09-11/30/09	11/30/09	12/02/09	216	219	217.5	2.1	0.98	0-5
SRP	hg/l	09-4188f	Rain Field Dup	12/04/09-12/07/09	12/07/09	12/09/09	7	9	6.5	0.1	1.10	0-5
SRP	hg/l	09-1342f	Site #1	12/25/09-12/29/09	12/30/09	04/09/09	15	14	14.5	0.7	4.88	0-5
SRP	hg/l	09-4476f	Site #1	12/25/09-12/29/09	12/30/09	12/31/09	312	318	315.0	4.2	1.35	0-5
SRP	hg/l	10-0026f	Site #4	12/29/09 - 01/05/10	01/05/10	01/06/10	106	105	105.5	0.7	0.67	0-5
SRP	hg/l	10-0027f	Rain	01/01/10	01/05/10	01/06/10	119	121	120.0	1.4	1.18	0-5
SRP	hg/l	10-0158f	Site # 3	01/22/10	01/22/10	01/22/10	1069	1095	1082.0	18.4	1.70	0-5
SRP	hg/l	10-0229f	Site # 3	01/22/10-01/28/10	01/28/10	01/29/10	52	50	51.0	1.4	2.77	0-5
SRP	hg/l	10-0252f	Site # 4	01/28/10-02/03/10	02/03/10	02/05/10	64	65	64.5	0.7	1.10	0-5
SRP	hg/l	10-0359f	Site # 4 Field Dup	02/03/10-02/11/10	02/12/10	02/12/10	37	37	37.0	0.0	0.00	0-5
SRP	hg/l	10-0376f	Rain	02/12/10	02/16/10	02/17/10	10	10	10.0	0.0	0.00	0-5
SRP	hg/l	10-0533f	Site # 2	03/10/10	03/10/10	03/12/10	30	31	30.5	0.7	2.32	0-5
SRP	hg/l	10-0650f	Rain	03/11/10-03/13/10	03/18/10	03/19/10	2	2	2.0	0.0	0.00	0-5

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	v	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Total N	hg/l	09-1208f	Site #1	03/31/09	03/31/09	04/30/09	269	240	254.5	20.5	8.06	0-10
Total N	l/gµ	09-1284f	Site #4 Field Dup	03/31/09-04/07/09	04/07/09	05/05/09	559	611	585.0	36.8	6.29	0-10
Total N	hg/l	09-1394f	Site #2	04/13/09	04/13/09	05/04/09	644	620	632.0	17.0	2.69	0-10
Total N	hg/l	09-1422f	Rain	04/14/09	04/16/09	05/07/09	1276	1262	1269.0	9.9	0.78	0-10
Total N	l/gri	09-1422f	Rain	04/14/09	04/16/09	05/07/09	1118	1099	1108.5	13.4	1.21	0-10
Total N	hg/l	09-1975f	Site #2	06/11/09	06/17/09	07/17/09	672	652	662.0	14.1	2.14	0-10
Total N	hg/l	09-1993	Site #3	06/18/09	06/23/09	07/09/10	1066	1101	1083.5	24.7	2.28	0-10
Total N	hg/l	09-2305	Site #1	7/21/09-07/28/09	07/28/09	10/26/09	2523	2604	2563.5	57.3	2.23	0-10
Total N	hg/l	09-2526f	Site #4/Outflow	08/03/09-08/11/09	08/11/09	11/04/09	1342	1321	1331.5	14.8	1.12	0-10
Total N	μg/l	09-2827f	Site #4/Outflow	08/21/08/28/08	08/28/09	09/26/09	438	414	426.0	17.0	3.98	0-10
Total N	l/gri	09-3435f	Site #3	09/28/09	09/28/09	12/02/09	932	908	920.0	17.0	1.84	0-10
Total N	l/gµ	09-4079FP	Site #4	11/17/09-11/30/09	11/30/09	12/22/09	181	187	184	4.2	2.31	0-10
Total N	μg/l	09-4191p	Site #3 Sampler Blank	12/07/09	12/07/09	02/02/10	0	0	0.1	0.0	0.00	0-10
Total N	hg/l	09-4188f	Rain Field Dup	12/04/09-12/07/09	12/07/09	02/02/10	383	409	396.0	18.4	4.64	0-10
Total N	hg/l	09-4452f	Site #4	12/14/09-12/23/09	12/23/09	02/04/10	487	423	455.0	45.3	9.95	0-10
Total N	hg/l	09-4480f	Rain	12/25/09	12/30/09	02/04/10	1111	1258	1184.5	103.9	8.78	0-10
Total N	hg/l	10-0027P	Rain	01/01/10	01/05/10	02/12/10	892	885	888.5	4.9	0.56	0-10
Total N	hg/l	10-0027FP	Rain	01/01/10	01/05/10	02/12/10	948	946	947.0	1.4	0.15	0-10
Total N	hg/l	10-0082P	Site # 4 F.D.	01/05/10-01/19/10	01/19/10	02/08/10	665	695	680.0	21.2	3.12	0-10
Total N	hg/l	10-0158FP	Site # 3	01/22/10	01/22/10	02/15/10	692	702	697.0	7.1	1.01	0-10
Total N	hg/l	10-0230FP	Site # 4	01/22/10-01/28/10	01/28/10	02/16/10	424	444	434.0	14.1	3.26	0-10
Total N	hg/l	10-0251FP	Site # 3	02/03/10	02/03/10	02/16/10	534	508	521.0	18.4	3.53	0-10
Total N	μg/l	10-0358P	Site # 4	02/03/10-02/11/10	02/12/10	02/22/10	875	606	892.0	24.0	2.70	0-10
Total N	μg/l	10-0380FP	Site # 4	02/11/10-02/16/10	02/17/10	02/22/10	497	490	493.5	4.9	1.00	0-10
Total N	hg/l	10-0532P	Site # 1	02/16/10-03/10/10	03/10/10	03/30/10	1255	1267	1261.0	8.5	0.67	0-10
Total N	hg/l	10-0532FP	Site # 1	02/16/10-03/10/10	03/10/10	03/30/10	1060	1023	1041.5	26.2	2.51	0-10
Total N	hg/l	10-0582P	Site # 1	03/12/10	03/12/10	03/30/10	813	856	834.5	30.4	3.64	0-10
Total N	hg/l	10-0729FP	Rain	03/25/10	03/26/10	04/15/10	951	965	958.0	9.9	1.03	0-10
Total N	l/gµ	10-0744FP	Rain	03/28/10-03/29/10	03/29/10	04/15/10	343	352	347.5	6.4	1.83	0-10

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	S	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Total P	hg/l	09-1208f	Site #1	03/31/09	03/31/09	04/30/09	134	152	143.0	12.7	06.8	0-10
Total P	l/gµ	09-1284f	Site #4 Field Dup	03/31/09-04/07/09	04/07/09	02/02/00	72.4	79.5	76.0	5.0	6.61	0-10
Total P	hg/l	09-1394f	Site #2	04/13/09	04/13/09	05/04/09	415	422	418.5	4.9	1.18	0-10
Total P	μg/l	09-1422f	Rain	04/14/09	04/16/09	05/07/09	28	30	29.0	1.4	4.88	0-10
Total P	hg/l	09-1975f	Site #2	06/17/09	06/17/09	07/17/09	361	352	356.5	6.4	1.79	0-10
Total P	hg/l	09-1993	Site #3	06/18/09	06/23/09	07/09/10	107	108	107.5	0.7	0.66	0-10
Total P	hg/l	09-2305	Site #1	7/21/09-07/28/09	07/28/09	10/26/09	420	422	421.0	1.4	0.34	0-10
Total P	hg/l	09-2526f	Site #4/Outflow	08/03/09-08/11/09	08/11/09	11/04/09	172	170	171.0	1.4	0.83	0-10
Total P	μg/I	09-2827f	Site #4/Outflow	08/21/08/28/08	08/28/09	09/26/09	147	148	147.5	0.7	0.48	0-10
Total P	μg/l	09-3435f	Site #3	09/28/09	09/28/09	12/02/09	45	42	43.5	2.1	4.88	0-10
Total P	hg/l	09-4079FP	Site #4	11/17/09-11/30/09	11/30/09	12/22/09	229	228	228.5	0.7	0.31	0-10
Total P	hg/l	09-4191p	Site #3 Sampler Blank	12/07/09	12/07/09	02/02/10	17	17	17.0	0.0	0.00	0-10
Total P	μg/I	09-4188f	Rain Field Dup	12/04/09-12/07/09	12/07/09	02/02/10	21	21	21.0	0.0	0.00	0-10
Total P	μg/l	09-4452f	Site #4	12/14/09-12/23/09	12/23/09	02/04/10	06	91	90.5	0.7	0.78	0-10
Total P	hg/l	09-4480f	Rain	12/25/09	12/30/09	02/04/10	86	79	82.5	4.9	6.00	0-10
Total P	hg/l	10-027P	Rain	01/01/10	01/05/10	02/12/10	77	78	77.5	0.7	0.91	0-10
Total P	hg/l	10-027FP	Rain	01/01/10	01/05/10	02/12/10	65	65	65.0	0.0	0.00	0-10
Total P	hg/l	10-082P	Site # 4 F.D.	01/05/10-01/19/10	01/19/10	02/08/10	133	137	135.0	2.8	2.10	0-10
Total P	hg/l	10-158FP	Site # 3	01/22/10	01/22/10	02/15/10	578	579	578.5	0.7	0.12	0-10
Total P	hg/l	10-230FP	Site # 4	01/22/10-01/28/10	01/28/10	02/16/10	68	68	68.0	0.0	0.00	0-10
Total P	hg/l	10-251FP	Site # 3	02/03/10	02/03/10	02/16/10	-	1	1.0	0.0	0.00	0-10
Total P	hg/l	10-0358P	Site # 4	02/03/10-02/11/10	02/12/10	02/22/10	142	147	144.5	3.5	2.4	0-10
Total P	μg/l	10-0376P	Rain	02/12/10	02/16/10	02/22/10	16	13	14.5	1.5	10.0	0-10
Total P	μg/l	10-0380FP	Site # 4	02/11/10-02/16/10	02/17/10	02/22/10	57	57	57.0	0.0	0.00	0-10
Total P	hg/l	10-0532P	Site # 1	02/16/10-03/10/10	03/10/10	03/30/10	555	551	553.0	2.8	0.51	0-10
Total P	μg/l	10-0532FP	Site # 1	02/16/10-03/10/10	03/10/10	03/30/10	138	147	142.5	6.4	4.47	0-10
Total P	hg/l	10-0582P	Site # 1	03/12/10	03/12/10	03/30/10	440	441	440.5	0.7	0.16	0-10
Total P	hg/l	10-0729FP	Rain	03/25/10	03/26/10	04/15/10	57	55	56.0	1.4	2.53	0-10
Total P	hg/l	10-0744FP	Rain	03/28/10-03/29/10	03/29/10	04/15/10	22	22	22.0	0.0	0.00	0-10

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	S	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
TSS	mg/L	09-1214	Site 4 Field Dup	03/31/09	03/31/09	04/10/09	9.3	9.3	9.3	0.0	0.00	0 - 13
TSS	mg/L	09-1284	Site 4 Field Dup	3/31 - 4/7/09	04/07/09	04/10/09	8.8	8.5	8.7	0.2	2.45	0 - 13
TSS	mg/L	09-1395	Site #4	04/13/09	04/13/09	04/17/09	25.6	25.6	25.6	0.0	0.00	0 - 13
TSS	mg/L	09-1422	Rain	04/14/09	04/16/09	04/17/09	1.6	1.6	1.6	0.0	0.00	0 - 13
TSS	mg/L	09-1516	Site 4	4/16 - 4/23/09	04/23/09	04/27/09	9.7	9.7	9.7	0.0	0.00	0 - 13
TSS	mg/L	09-1661	Site #4 Field Dup	5/8 - 5/14/09	05/14/09	05/15/09	10.3	9.8	10.1	0.4	3.52	0 - 13
TSS	mg/L	09-1793	Site 4	5/26 - 6/1/09	06/01/09	06/01/09	4.0	4.2	4.1	0.1	3.45	0 - 13
TSS	mg/L	09-1795	Rain	5/26 - 5/29/09	06/01/09	06/01/09	2.0	2.0	2.0	0.0	0.00	0 - 13
TSS	mg/L	09-1894	Rain	6/1 - 6/9/09	60/60/90	06/11/09	2.0	2.0	2.0	0.0	0.00	0 - 13
TSS	mg/L	09-1979	Rain	6/2 - 6/1/06	06/1/00	06/19/09	10	10.5	10.3	0.4	3.45	0 - 13
TSS	mg/L	09-2124	Site #3	06/30/08	06/30/06	07/10/09	6.3	6.3	6.3	0.0	0.00	0 - 13
TSS	mg/L	09-2403	Site #1	07/28/09	08/03/09	08/15/09	139	139	139.0	0.0	0.00	0 - 13
TSS	mg/L	09-2413	Site #4 Field Dup	7/28 - 8/3/09	08/03/09	08/15/09	7.1	6.2	6.7	0.6	9.57	0 - 13
TSS	mg/L	09-2525	Site #3	08/03/09	08/11/09	08/14/09	4.4	4.4	4.4	0.0	0.00	0 - 13
TSS	mg/L	09-2720	Rain	8/13 - 8/19/09	08/21/09	08/27/09	0.1	0.2	0.1	0.0	4.88	0 - 13
TSS	mg/L	09-2978	Site #2 SB	09/04/09	09/04/09	09/10/09	0.2	0.1	0.1	0.0	4.88	0 - 13
TSS	mg/L	09-3538	Rain Equip Blank	10/05/09	10/05/09	10/05/09	0.0	0.01	0.0	0.0	0.00	0 - 13
TSS	mg/L	09-3892	Site #4 SB	11/05/09	11/05/09	11/05/09	0.1	0.1	0.1	0.0	0.00	0 - 13
TSS	mg/L	09-4078	Site #1	11/17 - 11/30/09	11/30/09	12/02/09	53.7	52.7	53.2	0.7	1.33	0 - 13
TSS	mg/L	09-4188	Rain Field Dup	12/4 - 12/7/09	12/07/09	12/11/09	1.9	2.1	2.0	0.1	3.90	0 - 13
TSS	mg/L	09-4453	Rain	12/18/09	12/18/09	12/28/09	2.7	2.7	2.7	0.0	0.00	0 - 13
TSS	mg/L	10-0027	Rain Blank	01/05/10	01/05/10	01/08/10	0.4	0.4	0.4	0.0	0.00	0 - 13
TSS	mg/L	10-0081	Site #4	1/5 - 1/19/10	01/19/10	01/20/10	34	32	33.0	1.4	4.29	0 - 13
TSS	mg/L	10-0083	Rain	01/17/10	01/19/10	01/20/10	2.0	2.0	2.0	0.0	0.00	0 - 13
TSS	mg/L	10-0160	Rain	1/19 - 1/22/10	01/22/10	01/25/10	3.5	3.5	3.5	0.0	0.00	0 - 13
TSS	mg/L	10-0230	Site #4	1/22 - 1/28/10	01/28/10	01/29/10	0.8	0.7	0.8	0.1	9.43	0 - 13
TSS	mg/L	10-0252	Site #4	1/28 - 2/3/10	02/03/10	02/04/10	4.5	4.6	4.6	0.1	1.55	0 - 13
TSS	mg/L	10-0358	Site #4	02/10/10	02/12/10	02/12/10	15	14.9	15.0	0.1	0.47	0 - 13
TSS	mg/L	10-0533	Site #2	03/10/10	03/10/10	03/12/10	27.8	26.0	26.9	1.3	4.73	0 - 13

PARAMETERS	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	REPEAT 1	REPEAT 2	MEAN	S	% RELATIVE STD. DEVIATION (RSD)	ACCEPTANCE RANGE (% RSD)
Turbidity	NTU	09-1285	Rain	3/31 - 4/7/09	04/07/09	04/09/09	5.3	5.3	5.3	0.0	0.00	0 - 3.7
Turbidity	NTU	09-1516	Site 4	4/16 - 4/23/09	04/23/09	04/24/09	3.1	3.1	3.1	0.0	0.00	0 - 3.7
Turbidity	NTU	09-1560	Site 4	4/24 - 4/28/09	04/30/09	05/01/09	7.3	7.1	7.2	0.1	1.96	0 - 3.7
Turbidity	NTU	09-1597	Site 1	4/30 - 5/7/09	05/07/09	05/08/09	7.3	6.9	7.1	0.2	3.09	0 - 3.7
Turbidity	NTU	09-1601	Site 4	4/30 - 5/7/09	05/07/09	05/08/09	4.5	4.7	4.6	0.1	3.07	0 - 3.7
Turbidity	NTU	09-1662	Rain	05/13/09	05/14/09	05/15/09	6.9	7	7.0	0.1	1.02	0 - 3.7
Turbidity	NTU	09-1793	Site 4	5/26 - 6/1/09	06/01/09	06/02/09	2.5	2.5	2.5	0.0	0.00	0 - 3.7
Turbidity	NTU	09-1796	Rain Blank	06/01/09	06/01/09	06/02/09	0.2	0.2	0.2	0.0	0.00	0 - 3.7
Turbidity	NTU	09-1894	Rain	6/1 - 6/9/09	06/09/09	06/10/09	0.8	0.8	0.8	0.0	0.00	0 - 3.7
Turbidity	NTU	09-1979	Rain	6/9 - 6/17/09	06/17/09	06/18/09	2.7	2.7	2.7	0.0	0.00	0 - 3.7
Turbidity	NTU	09-1996	Rain	06/18/09	06/23/09	06/24/09	4.0	3.9	4.0	0.1	1.79	0 - 3.7
Turbidity	NTU	09-2124	Site #3	06/30/09	07/08/09	07/10/09	5.3	5.3	5.3	0.0	0.00	0 - 3.7
Turbidity	NTU	09-2192	Rain	7/8 - 7/14/9	07/14/09	07/15/09	1.4	1.4	1.4	0.0	0.00	0 - 3.7
Turbidity	NTU	09-2249	Site #4 F.D.	7/14 - 7/21/09	07/21/09	07/22/09	1.5	1.6	1.5	0.0	0.46	0 - 3.7
Turbidity	NTU	09-2306	Rain	07/26/09	07/28/09	07/29/09	3.0	3.1	3.1	0.1	2.32	0 - 3.7
Turbidity	NTU	09-3439	REB	09/28/09	09/28/09	60/08/60	0.2	0.2	0.2	0.0	0.00	0 - 3.7
Turbidity	NTU	09-3537	Site #4	1 0/05/09	1 0/05/09	1 0/07/09	0.2	0.2	0.2	0.0	0.00	0 - 3.7
Turbidity	NTU	09-3892	Site #4 Blank	11/05/09	11/05/09	11/05/09	0.2	0.2	0.2	0.0	0.00	0 - 3.7
Turbidity	NTU	09-3916	Site #4	11/10/09	11/10/09	11/12/09	12.3	12.2	12.3	0.1	0.58	0 - 3.7
Turbidity	NTU	09-3971	Site #4	11/10 - 11/17/09	11/17/09	11/17/09	11.5	11.5	11.5	0.0	0.00	0 - 3.7
Turbidity	NTU	09-4078	Site #1	11/17 - 11/30/09	11/30/09	12/02/09	27.1	26.8	27.0	0.2	0.79	0 - 3.7
Turbidity	NTU	10-0027	Rain	01/01/10	01/05/10	01/06/10	0.8	0.8	0.8	0.0	0.00	0 - 3.7
Turbidity	NTU	10-0083	Rain	01/17/10	01/19/10	01/20/10	2.0	2.0	2.0	0.0	0.00	0 - 3.7
Turbidity	NTU	10-0160	Rain	1/19 - 1/22/10	01/22/10	01/23/10	0.7	0.7	0.7	0.0	0.00	0 - 3.7
Turbidity	NTU	10-0230	Site #4	1/22 - 1/28/10	01/28/10	01/29/10	1.2	1.2	1.2	0.0	0.00	0 - 3.7
Turbidity	NTU	10-0252	Site #4	1/28 - 2/3/10	02/03/10	02/04/10	1.8	1.7	1.7	0.0	2.27	0 - 3.7
Turbidity	NTU	10-0360	Rain	02/10/10	02/12/10	02/12/10	1.8	1.8	1.8	0.0	0.00	0 - 3.7
Turbidity	NTU	10-0536	Rain	2/22 - 3/2/10	03/10/10	03/12/10	1.1	1.1	1.1	0.0	0.00	0 - 3.7
Turbidity	NTU	10-0583	Site #3	03/12/10	03/12/10	03/14/10	3.5	3.5	3.5	0.0	0.00	0 - 3.7

s SAMPLE ID DEC			DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	INITIAL CONC.	INITIAL VOLUME (ml)	SPIKE CONC.	SPIKE VOLUME ADDED (ml)	Dilution Factor	THEOR. CONC.	ACTUAL CONC.	PERCENT RECOVERY	ACCEPTANCE RANGE
mg/l 09-2725 Site #4 08/20/09 08/2 mg/l 09-2984 Rain Sample Blank 09/04/09 09/0	Site #4 08/20/09 Rain Samole Blank 09/04/09		08/2	08/21/09 09/04/09	08/21/09 09/04/09	74.6 0.6	50	1000	1 0.5		94.6 10.6	88.8 10.6	94% 100%	91-105 91-105
09-3892 Site #4 11/05/09	Site #4 11/05/09		11/0	11/05/09	11/05/09	0.4	50	1000	0.4	-	8.4	8.4	100%	91-105
mg/l 09-4477 Site #3 12/29/09 12/	. Site #3 12/29/09		12/	12/30/09	01/05/10	187	50	1000	0.3	1	193	194	101%	91-105
Rain 01/17/10	Rain 01/17/10	_	01	01/19/10	01/22/10	11.4	50	1000	0.3	-	17.4	17.8	102%	91-105
Rain 03/25/10	Rain 03/25/10		ö	03/26/10	04/06/10	3.6	50	1000	0.3	-	9.6	9.2	96%	91-105
mg/l 10-0160 Rain 1/19 - 1/22/10 0	Rain 1/19 - 1/22/10	_	0	01/22/10	01/27/10	8.0	50	1000	0.3	-	14.0	13.4	96%	91-105
mg/l 10-0230 Site #4 1/22 - 1/28/10	Site #4 1/22 - 1/28/10	_		01/28/10	02/01/10	126	50	1000	0.3	-	132	134	102%	91-105
mg/l 10-0252 Site #4 1/28 - 2/3/10	Site #4 1/28 - 2/3/10	_		02/03/10	02/08/10	133	50	1000	0.3	-	139	138	89%	91-105
Site #1 11/17 - 11/30/09	Site #1 11/17 - 11/30/09			11/30/09	12/03/09	186	50	1000	0.4	٢	194.0	194	100%	91-105
mg/l 09-2527 Rain 8/3 - 8/7/09	Rain 8/3 - 8/7/09			08/11/09	08/12/09	2.2	50	1000	0.5	-	12.2	11.8	97%	91-105
μg/l 09-1282P Site #2 04/07/09	Site #2 04/07/09			04/07/09	04/16/09	97	10	10000	1.0	1	1097	1013	92%	80-120
μg/l 09-1394P Site #2 04/13/09 0	Site #2 04/13/09		0	04/13/09	04/17/09	75	10	10000	1.0	-	1075	1169	109%	80-120
Site #2 04/16/09	Site #2 04/16/09		ò	04/16/09	04/17/09	68	10	10000	1.0	-	1068	1162	109%	80-120
μg/l 09-1663P Site #1 05/14/09 05	Site #1 05/14/09		ő	05/18/09	05/28/09	149	10	10000	1.0	-	1149	1070	93%	80-120
μg/l 09-2409P Site #3 07/28/09 08.	Site #3 07/28/09		08	08/03/09	08/18/09	38	10	10000	1.0	-	1038	1060	102%	80-120
Site # 3 01/22/10	Site # 3 01/22/10		01	01/22/10	02/09/10	164	10	10000	1.0	٢	1164	1023	88%	80-120
μg/l 10-0250P Site # 2 02/03/10 02	Site # 2 02/03/10		02	02/03/10	02/09/10	125	10	10000	0.3	-	425	390	92%	80-120
μg/l 10-0533P Site # 2 03/10/10 0:	Site # 2 03/10/10		ö	03/10/10	03/24/10	204	10	10000	1.0	-	1204	1048	87%	80-120
Site # 3 01/22/10-01/28/10	Site # 3 01/22/10-01/28/10			01/28/10	02/09/10	34	10	10000	1.0	-	1034	860	83%	80-120
Rain 03/28/10-03/29/10	Rain 03/28/10-03/29/10	_	0	03/29/10	04/12/10	60	10	10000	0.7	-	760	751	99%	80-120
09-3438P Rain 09/22/09-09/27/09	Rain 09/22/09-09/27/09	_	\cup	09/28/09	10/14/09	1517	10	10000	0.15	-	1667	1535	92%	80-120
09-388P Site #4 10/27/09-11/05/09	Site #4 10/27/09-11/05/09			11/05/09	11/30/09	0	10	10000	1.75	-	1750	1781	102%	80-120
10-0026P Site #4	Site #4	12/29/09 - 01/05/10		01/05/10	01/15/10	33	10	10000	1.0	-	1033	845	82%	80-120
10-0026P Site #4 12/29	Site #4	12/29/09 - 01/05/10		01/05/10	01/15/10	22	10	10000	1.0	~	1022	912	89%	80-120
09-1215 Site 4 Blank	Site 4 Blank	03/31/09		03/31/09	04/01/09	0.4	25	500	0.5	-	10	10.5	101%	90-110
09-1394 Site 4	Site 4	04/13/09		04/13/09	04/14/09	30	25	500	0.5	-	40	36	80%	90-110
09-1422 Rain	Rain	04/14/09		04/16/09	04/17/09	12.4	25	500	0.5	-	22	23	103%	90-110
09-1603 Rain Blank	Rain Blank	05/07/09		05/07/09	05/08/09	0.4	25	500	0.5	-	10	10.5	101%	90-110
09-1796 Rain Blank	Rain Blank	06/01/09		06/01/09	06/03/09	0.4	25	500	0.5	-	10	10.5	101%	90-110
PCU 09-2130 Rain Blank 07/08/09	Rain Blank	02/08/09		07/08/09	60/60/20	2	25	500	1.0	-	22	22	100%	90-110
09-2726 Rain	Rain	08/20/09		08/21/09	08/21/09	1.4	25	500	0.75	-	16	17	104%	90-110
PCU 10-0032 Rain Blank 01/05/10	Rain Blank	01/05/10		01/05/10	01/05/10	0	25	500	1.0	1	20	20	100%	90-110
PCU 09-1516 Site 4 04/16/09-04/23/09	Site 4	04/16/09-04/23/09		04/23/09	04/28/09	23	25	500	0.5	1	33	34	103%	90-110
PCU 09-1661 Site 4 F.D. 05/08/09-05/14/09	Site 4 F.D.	05/08/09-05/14/09		05/14/09	05/14/09	38	25	500	0.5	1	48	48	100%	90-110
PCU 09-1729 Rain 05/22/09-05/25/09	Rain	05/22/09-05/25/09		05/26/09	05/28/09	8.4	25	500	0.5	1	18	19	103%	90-110
PCU 09-1979 Rain 06/09/09-06/17/09	Rain	06/09/09-06/17/0	6	06/17/00	06/18/09	11.4	25	500	0.5	1	21	22	103%	90-110
PCU 09-2413 Site 4 F.D. 07/28/09-08/03/09	Site 4 F.D.	07/28/09-08/03/09		60/20/80	08/04/09	44	25	500	1.0	2.5	130	131	101%	90-110
PCU 09-2527 Rain 08/03/09-08/07/09	Rain	08/03/09-08/07/09		08/11/09	08/12/09	2	25	500	1.0	1	22	22	100%	90-110
PCU 09-1560 Site 4 4/24/09-4/28/09	Site 4	4/24/09-4/28/09		04/30/09	05/01/09	39	25	500	0.5	1	49	49	100%	90-110

Ирн Ирн 100 100 100	09-1662f 10-0158f	DESCRIPTION		RECEIVED	ANALYZED	CONC.	VOLUME (ml)	SPIKE CONC.	ADDED (ml)	Factor	CONC.	CONC.	RECOVERY	RANGE
	0-0158f	Rain	05/13/09	05/14/09	05/15/09	438	10	50000	0.1	1	938	1030	110%	90-110
		Site # 3	01/22/10	01/22/10	01/22/10	134	10	11300	0.4	1	586	623	%66	90-110
	10-0533f	Site # 2	03/10/10	03/10/10	03/12/10	119	10	11300	0.2	٢	345	321	%86	90-110
	10-0229f	Site # 3	01/22/10-01/28/10	01/28/10	01/29/10	14	10	11300	0.25	1	297	267	%06	90-110
	10-0359f	Site # 4 Field Dup	02/03/10-02/11/10	02/12/10	02/12/10	12	10	11300	0.2	٢	238	230	%26	90-110
	09-1284f	Site #4 Field Dup	03/31/09-04/07/09	04/07/09	04/09/09	70	10	100000	0.25	+	2570	2559	100%	90-110
	09-1560f	Site #4	04/24/09-04/28/09	04/30/09	04/30/09	Ļ	10	50000	0.25	٦	1251	1142	91%	90-110
	09-2413f	Site #4 Field Dup	07/28/09-08/03/09	08/03/09	08/06/09	5	10	100000	0.2	+	2005	1867	63%	90-110
	09-2983f	Rain	08/28/09-09/04/09	09/04/09	09/02/09	136	10	50000	0.4	١	2136	2067	%26	90-110
	09-2983f	Rain	08/28/09-09/04/09	09/04/09	09/11/09	119	10	100000	0.2	٢	2119	2287	108%	90-110
	09-4476f	Site #1	12/25/09-12/29/09	12/30/09	12/31/09	121	10	100000	0.35	٢	3621	3482	%96	90-110
	10-0457f	Site #1	12/25/09-12/29/09	12/30/09	03/04/10	12	10	11300	0.1	÷	125	130	104%	90-110
	09-1793f	Site #4 / Outflow	5/26/09 - 6/01/09	06/01/09	06/03/09	13	10	100000	0.1	-	1013	1054	104%	90-110
	09-1662f	Rain	05/13/09	05/14/09	05/15/09	243	10	10000	0.15	Ļ	393	365	%86	90-110
	10-0158f	Site # 3	01/22/10	01/22/10	01/22/10	1069	10	10000	1.0	+	2069	2039	%66	90-110
	10-0533f	Site # 2	03/10/10	03/10/10	03/12/10	30	10	10000	0.5	٢	530	479	%06	90-110
	10-0229f	Site # 3	01/22/10-01/28/10	01/28/10	01/29/10	52	10	10000	0.25	+	302	288	95%	90-110
	10-0359f	Site # 4 Field Dup	02/03/10-02/11/10	02/12/10	02/12/10	37	10	10000	0.2	1	237	245	103%	90-110
	09-1284f	Site #4 Field Dup	03/31/09-04/07/09	04/07/09	04/09/09	73	10	10000	0.25	٢	323	328	102%	90-110
	09-1560f	Site #4	04/24/09-04/28/09	04/30/09	04/30/09	57	10	10000	0.5	٢	557	543	%26	90-110
μg/l 06	09-2413f	Site #4 Field Dup	07/28/09-08/03/09	08/03/09	08/06/09	317	10	10000	0.4	1	717	969	%26	90-110
μg/l 0:	09-2983f	Rain	08/28/09-09/04/09	09/04/09	09/02/09	5	10	10000	0.25	-	255	266	104%	90-110
μg/l 00	09-3888f	Site #4	10/27/09-11/05/09	11/05/09	11/06/09	290	10	10000	0.5	1	790	741	94%	90-110
μg/l 09	09-4476f	Site #1	12/25/09-12/29/09	12/30/09	12/31/09	312	10	10000	0.2	-	512	499	97%	90-110
µg/l 1(10-0457f	Site #1	12/25/09-12/29/09	12/30/09	03/04/10	774	10	10000	0.1	1	874	794	91%	90-110
μg/l 06	09-1793f	Site #4 / Outflow	5/26/09 - 6/01/09	06/01/09	06/03/09	336	10	10000	0.2	1	536	515	96%	90-110
рд/I 05	09-1792fp	Site #3 Sampler Blank	06/01/09	06/01/09	06/21/09	0	5	100000	0.05	٢	1000	982	%86	90-110
μg/l 09	09-2125bP	Site #3 Sampler Blank	07/08/09	07/08/09	08/05/09	17	5	22600	0.05	1	243	230	95%	90-110
30 l/gri	09-2722p	Site #1	08/20/09	08/21/09	11/11/09	794	5	100000	0.1	1	2794	2987	107%	90-110
90 l/gu	09-3435F	Site #3	09/28/09	09/28/09	12/02/09	932	5	22600	0.5	1	3192	3231	101%	90-110
µg/l 10	10-027FP	Rain	01/01/10	01/05/10	02/12/10	948	5	22600	0.6	٢	3660	3605	%86	90-110
µg/l 10	10-158FP	Site # 3	01/22/10	01/22/10	02/15/10	702	5	22600	0.5	1	2962	3018	102%	90-110
μg/l 10	10-0376P	Rain	02/12/10	02/16/10	02/22/10	872	5	22600	0.5	1	3132	3187	102%	90-110
hg/l 10	10-0582P	Site # 1	03/12/10	03/12/10	03/30/10	813	5	22600	0.5	1	3073	2903	64%	90-110
hg/l 10	10-0358P	Site # 4	02/03/10-02/11/10	02/12/10	02/22/10	875	5	22600	0.6	٢	3587	3518	%86	90-110
µg/l 10	10-0532FP	Site # 1	02/16/10-03/10/10	03/10/10	03/30/10	1060	5	22600	0.5	1	3320	3106	94%	90-110
90 l/gµ	09-1665p	Site #1 Field Dup	05/15/09 - 05/17/09	05/18/09	60/60/90	1204	5	100000	0.05	٢	2204	2212	100%	90-110
90 l/gµ	09-1728p	Site #4 Outflow	05/21/09 - 05/26/09	05/26/09	06/12/09	1398	5	22600	0.3	-	2754	2799	102%	90-110
hg/l 05	09-1892fp	Site #4/Outflow	06/01/09-06/09/09	60/60/90	07/16/09	482	5	22600	0.05	-	708	642	91%	90-110
30 l/gµ	09-2981p	Site #4	08/28/09-09/04/09	09/04/09	11/11/09	773	5	100000	0.1	-	2773	2783	100%	90-110
30 J/6ri	09-1516p	Site #4	4/16/09 - 4/23/09	04/23/09	05/28/09	1407	5	22600	0.05	-	1633	1571	%96	90-110

PARAMETER	UNITS	SAMPLE ID	SAMPLE DESCRIPTION	DATE COLLECTED	DATE RECEIVED	DATE ANALYZED	INITIAL CONC.	INITIAL VOLUME (ml)	SPIKE CONC.	SPIKE VOLUME ADDED (ml)	Dilution Factor	THEOR. CONC.	ACTUAL CONC.	PERCENT RECOVERY	ACCEPTANCE RANGE
Total P	l/gµ	09-1792f	Site #3 Sampler Blank	06/01/09	06/01/09	06/21/09	21	5	10000	0.1	1	221	208	94%	90-110
Total P	l/bri	09-2125b	Site #3 Sampler Blank	02/08/09	07/08/09	08/02/00	0	5	10000	0.15	1	300	310	103%	90-110
Total P	l/gµ	09-2722	Site #1	08/20/09	08/21/09	11/11/09	398	5	10000	0.2	1	798	866	109%	90-110
Total P	l/gµ	10-027FP	Rain	01/01/10	01/05/10	02/12/10	65	5	50000	0.05	٢	565	605	107%	90-110
Total P	l/gµ	10-158FP	Site # 3	01/22/10	01/22/10	02/15/10	579	5	50000	0.05	٢	1079	1102	102%	90-110
Total P	l/gµ	10-0376P	Rain	02/12/10	02/16/10	02/22/10	16	5	50000	0.05	-	516	518	100%	90-110
Total P	l/gµ	10-0582P	Site # 1	03/12/10	03/12/10	03/30/10	440	5	50000	0.05	1	940	957	102%	90-110
Total P	l/gµ	10-0358P	Site # 4	02/03/10-02/11/10	02/12/10	02/22/10	142	5	50000	0.05	1	642	654	102%	90-110
Total P	l/gµ	10-0532FP	Site # 1	02/16/10-03/10/10	03/10/10	03/30/10	138	5	50000	0.05	1	638	686	108%	90-110
Total P	l/gµ	09-1665	Site #1 Field Dup	05/15/09 - 05/17/09	05/18/09	60/60/90	414	5	10000	0.1	1	614	642	105%	90-110
Total P	l/bri	09-1728	Site #4 Outflow	05/21/09 - 05/26/09	05/26/09	06/12/09	397	5	10000	0.15	1	269	690	66%	90-110
Total P	l/gµ	09-1892f	Site #4/Outflow	06/01/09-06/09/09	06/09/09	07/16/09	295	5	10000	0.1	1	495	530	107%	90-110
Total P	l/gµ	09-4188f	Site #4	08/28/09-09/04/09	09/04/09	11/11/09	363	5	50000	0.05	1	863	861	100%	90-110
Total P	l/gµ	09-4452f	Site #4	12/14/09-12/23/09	12/23/09	02/04/10	90	5	50000	0.05	1	590	627	106%	90-110
Total P	hgµl	09-1516	Site #4	4/16/09 - 4/23/09	04/23/09	05/28/09	207	5	10000	0.1	1	407	418	103%	90-110
Turbidity	NTU	09-2414	Blank	08/03/09	08/03/09	08/05/09	0.0	50	4000	0.25	1	20.0	19.0	95%	87.4 - 110
Turbidity	NTU	09-2726	Rain	08/20/09	08/21/09	08/21/09	1.0	50	4000	0.25	1	21.0	20.9	100%	87.4 - 110
Turbidity	NTU	09-2984	Rain Equipment Blank	09/04/09	09/04/09	09/04/09	0.2	50	4000	0.25	1	20.2	19.7	98%	87.4 - 110
Turbidity	NTU	09-3892	Site #4 Sample Blank	11/05/09	11/05/09	11/05/09	0.2	50	4000	0.375	1	30.2	27.0	89%	87.4 - 110
Turbidity	NTU	09-4480	Rain	12/25/09	12/30/09	12/31/09	0.9	50	4000	0.375	1	30.9	30.7	99%	87.4 - 110
Turbidity	NTU	10-0027	Rain	01/01/10	01/05/10	01/06/10	0.8	50	4000	0.25	1	20.8	20.3	98%	87.4 - 110
Turbidity	NTU	10-0083	Rain	01/17/10	01/19/10	01/20/10	2.0	50	4000	0.25	1	22.0	22.1	100%	87.4 - 110
Turbidity	NTU	10-0160	Rain	1/19 - 1/22/10	01/22/10	01/23/10	0.7	50	4000	0.25	1	20.7	21.3	103%	87.4 - 110
Turbidity	NTU	10-0230	Site #4	1/22 - 1/28/10	01/28/10	01/29/10	1.2	50	4000	0.25	1	21.2	21.4	101%	87.4 - 110
Turbidity	NTU	09-3971	Site #4	11/10 - 11/17/09	11/17/09	11/17/09	11.5	50	4000	0.375	1	41.5	41.4	100%	87.4 - 110
Turbidity	NTU	09-4286	Site #4	12/7 - 12/14/09	12/14/09	12/16/09	1.7	50	4000	0.375	٢	37.1	37.0	100%	87.4 - 110